Robust Calibration Algorithm for Multiplicative Modeling Errors Against Location Deviations of Auxiliary Sources | Circuits, Systems, and Signal Processing Skip to main content
Log in

Robust Calibration Algorithm for Multiplicative Modeling Errors Against Location Deviations of Auxiliary Sources

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

It is well known that the azimuth deviations of the auxiliary sources severely degrade the performance of classical subspace-based calibration methods that assume the direction-of-arrivals of calibration sources are perfectly measured. Therefore, aiming at the effects of source location deviations, the estimation variance of the multiplicative modeling errors for the subspace-based calibration method is first derived by applying matrix eigen-perturbation theory and first-order perturbation analysis approach. The theoretical analysis is undertaken under the assumption that the azimuth deviations are small enough for the first-order perturbation analysis to be valid. In addition, to mitigate the effects of the location errors, a structured total least squares optimization model is established using first-order Taylor series expansion method. Then, the corresponding numerical algorithm is presented to provide a robust estimate for multiplicative modeling errors. The exact Cramér–Rao bound expressions for the unknowns are also deduced in the presence of the azimuth deviations. Simulation results confirm the effectiveness of the theoretical analysis and demonstrate the desirable behavior of the robust calibration algorithm in comparison with the subspace-based calibration methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q. Cheng, Y.B. Hua, P. Stoica, Asymptotic performance of optimal gain-and-phase estimators of sensor arrays. IEEE Trans. Signal Process. 48, 3587–3590 (2000)

    Article  MATH  Google Scholar 

  2. M.B. De, Total least squares for affine structured matrices and the noisy realization problem. IEEE Trans. Signal Process. 42, 3104–3113 (1994)

    Article  Google Scholar 

  3. A. Ferréol, P. Larzabal, M. Viberg, On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: case of MUSIC. IEEE Trans. Signal Process. 54, 907–920 (2006)

    Article  Google Scholar 

  4. A. Ferréol, P. Larzabal, M. Viberg, On the resolution probability of MUSIC in presence of modeling errors. IEEE Trans. Signal Process. 56, 1945–1953 (2008)

    Article  MathSciNet  Google Scholar 

  5. A. Ferréol, P. Larzabal, M. Viberg, Statistical analysis of the MUSIC algorithm in the presence of modeling errors: taking into account the resolution probability. IEEE Trans. Signal Process. 58, 4156–4166 (2010)

    Article  MathSciNet  Google Scholar 

  6. B. Friedlander, A.J. Weiss, Direction finding in the presence of mutual coupling. IEEE Trans. Antennas Propag. 39, 273–284 (1991)

    Article  Google Scholar 

  7. A.G. Jaffer, Constrained mutual coupling estimation for array calibration, in Proceedings of the IEEE International Conference on Signal, System and Computers, Pacific Grove, CA, pp. 1273–1277, 2001

  8. M. Lin, Z.Q. Gong, Subspace-based calibration approach for mutual coupling among sensors. Acta Electron. Sin. 29, 1176–1178 (2001)

    Google Scholar 

  9. C. Liu, Z.F. Ye, Y.F. Zhang, Autocalibration algorithm for mutual coupling of planar array. Signal Process. 90, 784–794 (2010)

    Article  MATH  Google Scholar 

  10. A.F. Liu, G.S. Liao, C. Zeng, Z.W. Yang, Q. Xu, An eigenstructure method for estimating DOA and sensor gain-phase errors. IEEE Trans. Signal Process. 59, 5944–5956 (2011)

    Article  MathSciNet  Google Scholar 

  11. C.M.S. See, Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases. Electron. Lett. 30, 373–374 (1994)

    Article  Google Scholar 

  12. C.M.S. See, B.K. Poth, Parametric sensor array calibration using measured steering vectors of uncertain locations. IEEE Trans. Signal Process. 47, 1133–1137 (1999)

    Article  Google Scholar 

  13. C.M.S. See, A.B. Gershman, Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays. IEEE Trans. Signal Process. 52, 329–338 (2004)

    Article  MathSciNet  Google Scholar 

  14. F. Sellone, A. Serra, A novel mutual coupling compensation algorithm for uniform and linear arrays. IEEE Trans. Signal Process. 55, 560–573 (2007)

    Article  MathSciNet  Google Scholar 

  15. V.C. Soon, L. Tong, Y.F. Huang, R. Liu, A subspace method for estimating sensor gains and phases. IEEE Trans. Signal Process. 42, 973–976 (1994)

    Article  Google Scholar 

  16. P. Stoica, A. Nehorai, Performance study of conditional and unconditional direction-of-arrval estimation. IEEE Trans. Acoust. Speech Signal Process. 38, 1783–1795 (1990)

    Article  MATH  Google Scholar 

  17. M. Viberg, A.L. Swindlehurst, A Bayesian approach to auto-calibration for parametric array signal processing. IEEE Trans. Signal Process. 42, 3495–3507 (1994)

    Article  Google Scholar 

  18. D. Wang, Y. Wu, Array errors active calibration algorithm and its improvement. Sci. China Ser. F 53, 1016–1033 (2010)

    Article  Google Scholar 

  19. B.H. Wang, Y.L. Wang, Y. Guo, Mutual coupling calibration with instrumental sensors. Electron. Lett. 40, 373–374 (2004)

    Google Scholar 

  20. S.J. Wijnholds, A.J. Boonstra, A multisource calibration method for phased array radio telescopes, in Proceedings of the 4th IEEE Workshop on Sensor Array and Multi-Channel Process, Waltham, MA, pp. 12–14, 2006

  21. S.J. Wijnholds, A. van der Veen, Multisource self-calibration for sensor arrays. IEEE Trans. Signal Process. 57, 3512–3522 (2009)

    Article  MathSciNet  Google Scholar 

  22. L. Yang, K.C. Ho, Alleviating sensor position error in source localization using calibration emitters at inaccurate locations. IEEE Trans. Signal Process. 58, 67–83 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author would like to thank all the anonymous reviewers for their valuable comments and suggestions which vastly improved the content and presentation of this paper. The author also acknowledges support from National Science Foundation of China under Grants 61201381 and the Future Development Foundation of Zhengzhou Information Science and Technology College under Grants YP12JJ202057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ding Wang.

Appendices

Appendix 1: Proof of (25)

Substitution of (22) and (23) into (21) yields

$$\begin{aligned} {\varvec{\delta m}}&\approx ( {{\varvec{mi}}_L^{( 1)\mathrm{T}} -{\varvec{I}}_L })\cdot \left\{ {{\varvec{\varPhi }}\left[ {{\varvec{\theta }}_0 ,{\varvec{E}}_0 } \right] } \right\} ^\mathrm{\dag }\cdot \left( {\sum \limits _{n=1}^D {{\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0n} } \right] } \right] \cdot ( {{\varvec{\varPi }}_{\varvec{E}} -{\varvec{\varPi }}_{{\varvec{E}}_0 } })\cdot {\varvec{T}}\left[ {{\varvec{a}}\left[ {\theta _{0n} } \right] } \right] \cdot {\varvec{m}}} }\right) \nonumber \\&= ( {{\varvec{mi}}_L^{( 1)\mathrm{T}} -{\varvec{I}}_L })\cdot \left\{ {{\varvec{\varPhi }}\left[ {{\varvec{\theta }}_0,{\varvec{E}}_0 } \right] } \right\} ^\mathrm{\dag }\cdot \sum \limits _{k=1}^D {\delta \theta _k \cdot \left( {\sum \limits _{n=1}^D {{\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0n} } \right] } \right] \cdot {\varvec{\dot{\varPi }}}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^{\bot ( k)} \cdot {\varvec{T}}\left[ {{\varvec{a}}\left[ {\theta _{0n} } \right] } \right] \cdot {\varvec{m}}} }\right) }\nonumber \\ \end{aligned}$$
(48)

Putting (24) into (48) leads to

$$\begin{aligned} {\varvec{\delta m}}&\approx -( {{\varvec{mi}}_L^{( 1)\mathrm{T}} -{\varvec{I}}_L })\cdot \left\{ {{\varvec{\varPhi }}\left[ {{\varvec{\theta }}_0,{\varvec{E}}_0 } \right] } \right\} ^\mathrm{\dag } \nonumber \\&\times \sum \limits _{k=1}^D {\delta \theta _k \cdot \left( {\sum \limits _{n=1}^D {{\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0n} } \right] } \right] \cdot \left( {\begin{array}{l} {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot ( {{\varvec{\dot{b}}}\left[ {\theta _{0k} } \right] \otimes {\varvec{i}}_D^{( k)\mathrm{T}} })\cdot {\varvec{B}}^\mathrm{\dag }\left[ {{\varvec{\theta }}_0 } \right] \\ +{\varvec{B}}^{\dag \hbox {H}}\left[ {{\varvec{\theta }}_0 } \right] \cdot ( {{\varvec{\dot{b}}}^\mathrm{H}\left[ {\theta _{0k} } \right] \otimes {\varvec{i}}_D^{( k)} })\cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \\ \end{array}}\right) \cdot {\varvec{T}}\left[ {{\varvec{a}}\left[ {\theta _{0n} } \right] } \right] \cdot {\varvec{m}}} }\right) } \nonumber \\&= -( {{\varvec{mi}}_L^{( 1)\mathrm{T}} -{\varvec{I}}_L })\cdot \left\{ {{\varvec{\varPhi }}\left[ {{\varvec{\theta }}_0 ,{\varvec{E}}_0 } \right] } \right\} ^\mathrm{\dag }\nonumber \\&\times \sum \limits _{k=1}^D {\delta \theta _k \cdot \left( {\sum \limits _{n=1}^D {{\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0n} } \right] } \right] \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot ( {{\varvec{\dot{b}}}\left[ {\theta _{0k} } \right] \otimes {\varvec{i}}_D^{( k)\mathrm{T}} })\cdot {\varvec{B}}^\mathrm{\dag }\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{b}}\left[ {\theta _{0n} } \right] } }\right) } \nonumber \\&= -( {{\varvec{mi}}_L^{( 1)\mathrm{T}} -{\varvec{I}}_L })\cdot \left\{ {{\varvec{\varPhi }}\left[ {{\varvec{\theta }}_0 ,{\varvec{E}}_0 } \right] } \right\} ^\mathrm{\dag }\nonumber \\&\times \sum \limits _{k=1}^D {\delta \theta _k \cdot \left( {\sum \limits _{n=1}^D {{\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0n} } \right] } \right] \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot ( {{\varvec{\dot{b}}}\left[ {\theta _{0k} } \right] \otimes {\varvec{i}}_D^{( k)\mathrm{T}} })\cdot {\varvec{i}}_D^{( n)} } }\right) } \end{aligned}$$
(49)

where the second equality follows from the orthogonal relationship as below:

$$\begin{aligned} {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot {\varvec{T}}\left[ {{\varvec{a}}\left[ {\theta _{0n} } \right] } \right] \cdot {\varvec{m}}={\varvec{O}}_{N\times 1} \quad ( {n=1, 2, \ldots , D}) \end{aligned}$$
(50)

and the third equality is a result of the following identity:

$$\begin{aligned} {\varvec{B}}^\mathrm{\dag }\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{b}}\left[ {\theta _{0n} } \right] ={\varvec{B}}^\mathrm{\dag }\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{i}}_D^{( n)} ={\varvec{i}}_D^{( n)} \quad ( {n=1, 2, \ldots , D}) \end{aligned}$$
(51)

In addition, it can be easily checked that

$$\begin{aligned} ( {{\varvec{\dot{b}}}\left[ {\theta _{0k} } \right] \otimes {\varvec{i}}_D^{( k)\mathrm{T}} })\cdot {\varvec{i}}_D^{( n)} =\delta _{nk} \cdot {\varvec{\dot{b}}}\left[ {\theta _{0k} } \right] \quad ( {n, k=1, 2, \ldots , D}) \end{aligned}$$
(52)

which combined with (49) yields

$$\begin{aligned} {\varvec{\delta m}}&\approx \sum \limits _{k=1}^D {\delta \theta _k \cdot ( {{\varvec{I}}_L -{\varvec{mi}}_L^{( 1)\mathrm{T}} })\cdot \left\{ {{\varvec{\varPhi }}\left[ {{\varvec{\theta }}_0 ,{\varvec{E}}_0 } \right] } \right\} ^\mathrm{\dag }\cdot {\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0k} } \right] } \right] \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot {\varvec{\dot{b}}}\left[ {\theta _{0k} } \right] }\nonumber \\&= \sum \limits _{k=1}^D {\delta \theta _k \cdot {\varvec{\xi }}_k } \end{aligned}$$
(53)

where \({\varvec{\xi }}_k \) is defined in (26). At this point, the proof of (25) is ended.

Appendix 2: Proof of (30)

Differentiating (8) with respect to \(\theta _k \) gives

$$\begin{aligned} {\varvec{\dot{A}}}_{\varvec{W}}^{( k)} \left[ {{\varvec{\theta }}_0 } \right]&= \left. {\frac{\partial {\varvec{A}}_{\varvec{W}} \left[ {\varvec{\theta }} \right] }{\partial \theta _k }} \right| _{{\varvec{\theta }}={\varvec{\theta }}_0 } {=}\left. {\frac{\partial {\varvec{A}}\left[ {\varvec{\theta }} \right] }{\partial \theta _k }} \right| _{{\varvec{\theta }}={\varvec{\theta }}_0 } {\cdot } {\varvec{W}}{\cdot } {\varvec{A}}^\mathrm{H}\left[ {{\varvec{\theta }}_0 } \right] {+}{\varvec{A}}\left[ {{\varvec{\theta }}_0 } \right] {\cdot } {\varvec{W}}{\cdot } \left. {\frac{\partial {\varvec{A}}^\mathrm{H}\left[ {\varvec{\theta }} \right] }{\partial \theta _k }} \right| _{{\varvec{\theta }}={\varvec{\theta }}_0 } \nonumber \\&=( {{\varvec{\dot{a}}}\left[ {\theta _k } \right] \otimes {\varvec{i}}_D^{( k)\mathrm{T}} })\cdot {\varvec{W}}\cdot {\varvec{A}}^\mathrm{H}\left[ {{\varvec{\theta }}_0 } \right] +{\varvec{A}}\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{W}}\cdot ( {{\varvec{\dot{a}}}^\mathrm{H}\left[ {\theta _k } \right] \otimes {\varvec{i}}_D^{( k)} }) \nonumber \\&={\varvec{\dot{P}}}^{( k)}\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{P}}^\mathrm{H}\left[ {{\varvec{\theta }}_0 } \right] +{\varvec{P}}\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{\dot{P}}}^{( k)\text{ H }}\left[ {{\varvec{\theta }}_0 } \right] \end{aligned}$$
(54)

which together with the matrix identity

$$\begin{aligned} \text{ vec }\left[ {{\varvec{X}}_{1} {\varvec{X}}_{2} {\varvec{X}}_{3} } \right] =( {{\varvec{X}}_{3}^\mathrm{T} \otimes {\varvec{X}}_{1} })\cdot \text{ vec }\left[ {{\varvec{X}}_{2} } \right] \end{aligned}$$
(55)

Implies

$$\begin{aligned}&\text{ vec }\left[ {{\varvec{\dot{A}}}_{\varvec{W}}^{( k)} \left[ {{\varvec{\theta }}_0 } \right] } \right] \nonumber \\&\quad =\text{ vec }\left[ {\left( {{\varvec{\dot{a}}}\left[ {\theta _k } \right] \otimes {\varvec{i}}_D^{( k)\mathrm{T}} }\right) \cdot {\varvec{W}}\cdot {\varvec{A}}^\mathrm{H}\left[ {{\varvec{\theta }}_0 } \right] +{\varvec{A}}\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{W}}\cdot \left( {{\varvec{\dot{a}}}^\mathrm{H}\left[ {\theta _k } \right] \otimes {\varvec{i}}_D^{( k)} }\right) } \right] \nonumber \\&\quad =( {{\varvec{P}}^*\left[ {{\varvec{\theta }}_0 } \right] \otimes {\varvec{I}}_N })\cdot \text{ vec }\left[ {{\varvec{\dot{P}}}^{( k)}\left[ {{\varvec{\theta }}_0 } \right] } \right] +( {{\varvec{I}}_N \otimes {\varvec{P}}\left[ {{\varvec{\theta }}_0 } \right] }){\varvec{\varPi }}_{N\bullet D} \cdot \text{ vec }\left[ {{\varvec{\dot{P}}}^{( k)*}\left[ {{\varvec{\theta }}_0 } \right] } \right] \nonumber \\ \end{aligned}$$
(56)

where \({\varvec{\varPi }}_{N\bullet D} \) is the permutation matrix such that \(\text{ vec }\left[ {{\varvec{\dot{P}}}^{( k)\mathrm{T}}\left[ {{\varvec{\theta }}_0 } \right] } \right] ={\varvec{\varPi }}_{N\bullet D} \cdot \text{ vec }\left[ {{\varvec{\dot{P}}}^{( k)}\left[ {{\varvec{\theta }}_0 } \right] } \right] \).

Moreover, it can be readily shown from (56) that

$$\begin{aligned}&\overline{\text{ vec }\left[ {{\varvec{\dot{A}}}_{\varvec{W}}^{( k)} \left[ {{\varvec{\theta }}_0 } \right] } \right] }\nonumber \\&\quad =\overline{\overline{{\varvec{P}}^*\left[ {{\varvec{\theta }}_0 } \right] \otimes {\varvec{I}}_N }} \cdot \overline{\text{ vec }\left[ {{\varvec{\dot{P}}}^{( k)}\left[ {{\varvec{\theta }}_0 } \right] } \right] } +\overline{\overline{( {{\varvec{I}}_N \otimes {\varvec{P}}\left[ {{\varvec{\theta }}_0 } \right] }){\varvec{\varPi }}_{N\bullet D} }} \cdot \overline{\text{ vec }\left[ {{\varvec{\dot{P}}}^{( k)*}\left[ {{\varvec{\theta }}_0 } \right] } \right] } \nonumber \\&\quad =\left( {\overline{\overline{{\varvec{P}}^*\left[ {{\varvec{\theta }}_0 } \right] \otimes {\varvec{I}}_N }} +\overline{\overline{( {{\varvec{I}}_N \otimes {\varvec{P}}\left[ {{\varvec{\theta }}_0 } \right] }){\varvec{\varPi }}_{N\bullet D} }} \cdot {\varvec{J}}_{\text{2 }ND}^{( 1)} }\right) \cdot \overline{\text{ vec }\left[ {{\varvec{\dot{P}}}^{( k)}\left[ {{\varvec{\theta }}_0 } \right] } \right] } \end{aligned}$$
(57)

which produces

$$\begin{aligned}&\text{ vec }\left[ {{\varvec{\dot{P}}}^{( k)}\left[ {{\varvec{\theta }}_0 } \right] } \right] \nonumber \\&\quad ={\varvec{J}}_{\text{2 }ND}^{( 2)} ( {\overline{\overline{{\varvec{P}}^*\left[ {{\varvec{\theta }}_0 } \right] \otimes {\varvec{I}}_N }} +\overline{\overline{( {{\varvec{I}}_N \otimes {\varvec{P}}\left[ {{\varvec{\theta }}_0 } \right] }){\varvec{\varPi }}_{N\bullet D} }} \cdot {\varvec{J}}_{\text{2 }ND}^{( 1)} })^\mathrm{\dag }\cdot \overline{\text{ vec }\left[ {{\varvec{\dot{A}}}_{\varvec{W}}^{( k)} \left[ {{\varvec{\theta }}_0 } \right] } \right] }\nonumber \\ \end{aligned}$$
(58)

It then follows directly from (58) that

$$\begin{aligned}&\!\!\!{\varvec{\dot{p}}}_n^{( k)} \left[ {{\varvec{\theta }}_0 } \right] \nonumber \\&~ =\text{ avec }\left[ {{\varvec{J}}_{\text{2 }ND}^{( 2)} ( {\overline{\overline{{\varvec{P}}^*\left[ {{\varvec{\theta }}_0 } \right] \otimes {\varvec{I}}_N }} \,\,{+}\,\,\overline{\overline{( {{\varvec{I}}_N \otimes {\varvec{P}}\left[ {{\varvec{\theta }}_0 } \right] }){\varvec{\varPi }}_{N\bullet D} }} \cdot {\varvec{J}}_{\text{2 }ND}^{( 1)} })^\mathrm{\dag }\cdot \overline{\text{ vec }\left[ {{\varvec{\dot{A}}}_{\varvec{W}}^{( k)} \left[ {{\varvec{\theta }}_0 } \right] } \right] } } \right] {\cdot } {\varvec{i}}_D^{( n)}\!\nonumber \\ \end{aligned}$$
(59)

Hence, Eq. (30) is proved.

Appendix 3: Proof of (44)

First, due to the structure of \(\overline{{\varvec{\tilde{I}}}_L {\varvec{m}}} =\left[ {{\begin{array}{ll} {( {{\varvec{\tilde{I}}}_L \cdot \text{ Re }\left\{ {\varvec{m}} \right\} })^\mathrm{T}} &{} {( {{\varvec{\tilde{I}}}_L \cdot \text{ Im }\left\{ {\varvec{m}} \right\} })^\mathrm{T}} \\ \end{array} }} \right] ^{\,\,\mathrm{T}}\), the \({\varvec{m}}\)-block of the Fisher information matrix \(\mathbf{FISH}_{{\varvec{mm}}} \) can be partitioned equally along the rows and columns, respectively, as below:

$$\begin{aligned} \mathbf{FISH}_{{\varvec{mm}}} =\left[ \begin{array}{l@{\quad }l} {{\varvec{\tilde{I}}}_L \cdot \mathbf{FISH}_{{\varvec{mm}}}^{( {11})} \cdot {\varvec{\tilde{I}}}_L^\mathrm{T} } &{} {{\varvec{\tilde{I}}}_L \cdot \mathbf{FISH}_{{\varvec{mm}}}^{( {12})} \cdot {\varvec{\tilde{I}}}_L^\mathrm{T} }\\ {{\varvec{\tilde{I}}}_L \cdot \mathbf{FISH}_{{\varvec{mm}}}^{( {21})} \cdot {\varvec{\tilde{I}}}_L^\mathrm{T} } &{} {{\varvec{\tilde{I}}}_L \cdot \mathbf{FISH}_{{\varvec{mm}}}^{( {22})} \cdot {\varvec{\tilde{I}}}_L^\mathrm{T} }\\ \end{array}\right] \end{aligned}$$
(60)

Applying (42), it follows that

$$\begin{aligned} \left\langle {\mathbf{FISH}_{{\varvec{mm}}}^{( {11})} } \right\rangle _{nl}&= \frac{\text{2 }K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\text{ trace }\left[ {\frac{\partial {\varvec{B}}^\mathrm{H}\left[ {{\varvec{\theta }}_0 } \right] }{\partial \left\langle {\text{ Re }\left\{ {\varvec{m}} \right\} } \right\rangle _n }\cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot \frac{\partial {\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }{\partial \left\langle {\text{ Re }\left\{ {\varvec{m}} \right\} } \right\rangle _l }{\varvec{W}}_{\text{ NSF }} } \right] } \right\} \nonumber \\&= \frac{\text{2 }K}{\sigma ^2}\sum \limits _{k_1 =1}^D \sum \limits _{k_2 =1}^D \mathrm{Re}\left\{ \text{ trace }\left[ \left\langle {{\varvec{W}}_{\text{ NSF }} } \right\rangle _{k_2 k_1 } \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot {\varvec{T}}\left[ {{\varvec{a}}\left[ {\theta _{0k_2 } } \right] } \right] \cdot {\varvec{i}}_L^{( l)} {\varvec{i}}_L^{( n)\mathrm{T}} \right. \right. \nonumber \\&\left. \left. \cdot \,{\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0k_1 } } \right] } \right] \right] \right\} \nonumber \\&= \frac{\text{2 }K}{\sigma ^2}\sum \limits _{k_1 =1}^D {\sum \limits _{k_2 =1}^D {\mathrm{Re}\left\{ {\left\langle {{\varvec{W}}_{\text{ NSF }} } \right\rangle _{k_2 k_1 } {\cdot } \left\langle {{\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0k_1 } } \right] } \right] \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot {\cdot } {\varvec{T}}\left[ {{\varvec{a}}\left[ {\theta _{0k_2 } } \right] } \right] } \right\rangle _{nl} } \right\} } }\nonumber \\ \end{aligned}$$
(61)

which implies

$$\begin{aligned} \mathbf{FISH}_{{\varvec{mm}}}^{( {11})}&= \frac{\text{2 }K}{\sigma ^2}\sum \limits _{k_1 =1}^D {\sum \limits _{k_2 =1}^D {\mathrm{Re}\left\{ {\left\langle {{\varvec{W}}_{\text{ NSF }} } \right\rangle _{k_2 k_1 } \cdot {\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0k_1 } } \right] } \right] \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot {\varvec{T}}\left[ {{\varvec{a}}\left[ {\theta _{0k_{2} } } \right] } \right] } \right\} } } \nonumber \\&= \frac{\text{2 }K}{\sigma ^2}\sum \limits _{k_1 =1}^D {\sum \limits _{k_2 =1}^D {\mathrm{Re}\left\{ {{\varvec{\Sigma }}_{k_2 k_1 } } \right\} } } \end{aligned}$$
(62)

where \({\varvec{\Sigma }}_{k_2 k_1 } \) is defined in (45). Likewise, it can be readily seen that

$$\begin{aligned} \left\{ \begin{array}{l} \mathbf{FISH}_{{\varvec{mm}}}^{( {\text{12 }})} =-\mathbf{FISH}_{{\varvec{mm}}}^{( {21})} =-\frac{2K}{\sigma ^\mathrm{2}}\sum \limits _{k_1 =1}^D {\sum \limits _{k_2 =1}^D {\mathrm{Im}\left\{ {{\varvec{\Sigma }}_{k_2 k_1 } } \right\} } } \\ \mathbf{FISH}_{{\varvec{mm}}}^{( {\text{22 }})} =\mathbf{FISH}_{{\varvec{mm}}}^{( {\text{11 }})} =\frac{2K}{\sigma ^\mathrm{2}}\sum \limits _{k_1 =1}^D {\sum \limits _{k_2 =1}^D {\mathrm{Re}\left\{ {{\varvec{\Sigma }}_{k_2 k_1 } } \right\} } } \\ \end{array} \right. \end{aligned}$$
(63)

which proves the first equation in (44).

Also, the upper right \(\text{2 }( {L-1})\times D\) corner of the Fisher information matrix \(\mathbf{FISH}_{{\varvec{m\theta }}} \) can be uniformly partitioned along the rows as

$$\begin{aligned} \mathbf{FISH}_{{\varvec{m\theta }}} =\left[ \begin{array}{l} {{\varvec{\tilde{I}}}_L \cdot \mathbf{FISH}_{{\varvec{m\theta }}}^{( 1)} } \\ {{\varvec{\tilde{I}}}_L \cdot \mathbf{FISH}_{{\varvec{m\theta }}}^{( 2)} } \\ \end{array} \right] \end{aligned}$$
(64)

Recalling (42) leads to

$$\begin{aligned} \left\langle {\mathbf{FISH}_{{\varvec{m\theta }}}^{( 1)} } \right\rangle _{nl}&= \frac{\text{2 }K}{\sigma ^2}\cdot \mathrm{Re}\left\{ \text{ trace }\left[ \frac{\partial {\varvec{B}}^\mathrm{H}\left[ {{\varvec{\theta }}_0 } \right] }{\partial \left\langle {\mathrm{Re}\left\{ {\varvec{m}} \right\} } \right\rangle _n }\cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot \frac{\partial {\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }{\partial \left\langle {{\varvec{\theta }}_0 } \right\rangle _l }\cdot {\varvec{W}}_{\text{ NSF }} \right] \right\} \nonumber \\&= \frac{\text{2 }K}{\sigma ^2}\sum \limits _{k=1}^D {\mathrm{Re}\left\{ {\text{ trace }\left[ {{\varvec{i}}_L^{( n)\mathrm{T}} \cdot {\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0k} } \right] } \right] \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot {\varvec{\dot{B}}}\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{i}}_D^{( l)} {\varvec{i}}_D^{( l)\mathrm{T}} {\varvec{W}}_{\text{ NSF }} {\varvec{i}}_D^{( k)} } \right] } \right\} } \nonumber \\&= \frac{\text{2 }K}{\sigma ^2}\sum \limits _{k=1}^D {\mathrm{Re}\left\{ {\left\langle {{\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0k} } \right] } \right] \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot {\varvec{\dot{B}}}\left[ {{\varvec{\theta }}_0 } \right] } \right\rangle _{nl} \cdot \left\langle {{\varvec{W}}_{\text{ NSF }} } \right\rangle _{lk} } \right\} } \end{aligned}$$
(65)

which gives

$$\begin{aligned} \mathbf{FISH}_{{\varvec{m\theta }}}^{( 1)} =\frac{2K}{\sigma ^2}\sum \limits _{k=1}^D {\mathrm{Re}\left\{ {( {{\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0k} } \right] } \right] \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot {\varvec{\dot{B}}}\left[ {{\varvec{\theta }}_0 } \right] })\bullet ( {{\varvec{1}}_{L\times 1} \otimes ( {{\varvec{W}}_{\text{ NSF }} {\varvec{i}}_D^{( k)} })^\mathrm{T}})} \right\} }\nonumber \\ \end{aligned}$$
(66)

Similarly, it can be easily deduced that

$$\begin{aligned} \mathbf{FISH}_{{\varvec{m\theta }}}^{( 2)} =\frac{2K}{\sigma ^2}\sum \limits _{k=1}^D {\mathrm{Im}\left\{ {( {{\varvec{T}}^\mathrm{H}\left[ {{\varvec{a}}\left[ {\theta _{0k} } \right] } \right] \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot {\varvec{\dot{B}}}\left[ {{\varvec{\theta }}_0 } \right] })\bullet ( {{\varvec{1}}_{L\times 1} \otimes ( {{\varvec{W}}_{\text{ NSF }} {\varvec{i}}_D^{( k)} })^\mathrm{T}})} \right\} }\nonumber \\ \end{aligned}$$
(67)

Equations (66) and (67) together prove the second equation in (44).

Finally, invoking (42) once again produces

$$\begin{aligned} \left\langle {\mathbf{FISH}_{{\varvec{\theta \theta }}} } \right\rangle _{nl}&= \frac{\text{2 }K}{\sigma ^2}\cdot \mathrm{Re}\left\{ {\text{ trace }\left[ {\frac{\partial {\varvec{B}}^\mathrm{H}\left[ {{\varvec{\theta }}_0 } \right] }{\partial \left\langle {{\varvec{\theta }}_0 } \right\rangle _n }\cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot \frac{\partial {\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }{\partial \left\langle {{\varvec{\theta }}_0 } \right\rangle _l }\cdot {\varvec{W}}_{\text{ NSF }} } \right] } \right\} +\left\langle {{\varvec{R}}_{{\varvec{\theta \theta }}}^{-1} } \right\rangle _{nl} \!\!\!\nonumber \\&= \frac{\text{2 }K}{\sigma ^2}\mathrm{Re}\left\{ {\text{ trace }\left[ {{\varvec{i}}_D^{( n)} {\varvec{i}}_D^{( n)\mathrm{T}} \cdot {\varvec{\dot{B}}}^\mathrm{H}\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot {\varvec{\dot{B}}}\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{i}}_D^{( l)} {\varvec{i}}_D^{( l)\mathrm{T}} {\varvec{W}}_{\text{ NSF }} } \right] } \right\} \!\!\! \nonumber \\&= \frac{\text{2 }K}{\sigma ^2}\mathrm{Re}\left\{ {\left\langle {{\varvec{\dot{B}}}^\mathrm{H}\left[ {{\varvec{\theta }}_0 } \right] \cdot {\varvec{\varPi }}_{{\varvec{B}}\left[ {{\varvec{\theta }}_0 } \right] }^\bot \cdot {\varvec{\dot{B}}}\left[ {{\varvec{\theta }}_0 } \right] } \right\rangle _{nl} \cdot \left\langle {{\varvec{W}}_{\text{ NSF }}^\mathrm{T} } \right\rangle _{nl} } \right\} +\left\langle {{\varvec{R}}_{{\varvec{\theta \theta }}}^{-1} } \right\rangle _{nl} \end{aligned}$$
(68)

which proves the third equality in (44).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, D., Ke, K., Zhang, X. et al. Robust Calibration Algorithm for Multiplicative Modeling Errors Against Location Deviations of Auxiliary Sources. Circuits Syst Signal Process 33, 2495–2519 (2014). https://doi.org/10.1007/s00034-014-9754-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9754-0

Keywords

Navigation