CMOS Current-Mode Implementation of Fractional-Power Functions | Circuits, Systems, and Signal Processing Skip to main content
Log in

CMOS Current-Mode Implementation of Fractional-Power Functions

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A CMOS current-mode circuit, with only eight transistors and two current sources, is proposed to implement a fractional power function. The compact circuit comprises of an approximating logarithm circuit and an approximating exponential circuit. By sizing one transistor and tuning one current source, we improve the truncation errors in the Taylor series approximation, and reduce the MOS square-law errors that are caused by second-order effects. As example, a circuit, designed for gamma correction, with different gamma values controlled by three switches, is fabricated using 0.35 μm CMOS technology. The demonstration circuit can achieve a bandwidth of 155 MHz for an input range from 40 μA to 130 μA with 3% error, and maximum power dissipation of approximately 970 μW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Chaisayun, A current-mode square-rooting circuit using negative feedback technique, in Proceedings of ECTI-CON (2007), pp. 77–84

    Google Scholar 

  2. C.A. De La Cruz-Blas, A. Lopez-Martin, A. Carlosena, 1.5-V MOS translinear loops with improved dynamic range and their applications to current-mode signal processing. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 50(12), 918–927 (2003)

    Article  Google Scholar 

  3. E. Farshidi, Micropower fuzzy linguistic-hedges circuit in current-mode approach. Int. J. Electron. Circuits Syst. (IJECS) 3(1), 46–52 (2009)

    Google Scholar 

  4. C.Y. Huang, C.Y. Chen, B.D. Liu, Current-mode fuzzy linguistic hedge circuits. Analog Integr. Circuits Signal Process. 19(3), 255–278 (1999)

    Article  Google Scholar 

  5. J.O. Kim, C.H. Oh, C.H. Chung, J. Hwang, W. Lee, On natural motion editing by a geometric mean filter, in ICCSA (2003), pp. 411–418

    Google Scholar 

  6. A. Kircay, M.S. Keserlioglu, U. Cam, A new current-mode square-root-domain notch filter, in European Conference on Circuit Theory and Design (2009), pp. 229–232

    Chapter  Google Scholar 

  7. J.R. Koza, F.H. Bennett III, J. Lohn, F. Dunlap, M.A. Keane, D. Andre, Automated synthesis of computational circuits using genetic programming, in Proc. 1997 IEEE Conf. Evolutionary Computation (1997), pp. 447–452

    Google Scholar 

  8. J.V. Kumar, K.R. Rao, A low-voltage low power CMOS companding filter, in Proceedings of the 16th International Conference on VLSI Design (2003), pp. 309–314

    Chapter  Google Scholar 

  9. T.S. Lande, J.A. Nesheim, Y. Berg, Auto correlation in micropower analog CMOS. Analog Integr. Circuits Signal Process. 1, 61–68 (1995)

    Article  Google Scholar 

  10. K.J. Lin, C.J. Cheng, CMOS current-mode geometric-mean circuit with n inputs, in International Symposium on signals, Circuits and Systems (2009), pp. 1–4

    Google Scholar 

  11. K.J. Lin, C.J. Cheng, J.E. Chen, CMOS current-mode companding multiplier/divider and its nth-root, in IMCAS10 Proceedings of 9th WSEAS International Conference on Instrumentation, Measurement, Circuits and Systems (2010), pp. 76–80

    Google Scholar 

  12. S. Menekay, R.C. Tarcan, H. Kuntman, Novel high-precision current-mode circuits based on the MOS-translinear principle. AEÜ, Int. J. Electron. Commun. 63, 992–997 (2009)

    Article  Google Scholar 

  13. A. Motamed, C. Hwang, M. Ismail, CMOS exponential current-to-voltage converter. Electron. Lett. 33(12), 998–1000 (1997)

    Article  Google Scholar 

  14. M. Mottaghi-Kashtiban, A. Khoei, K. Hadidi, A current-mode, first-order Takagi-Sugeno-Kang fuzzy logic controller, supporting rational-powered membership functions. IEICE Trans. Commun. E90-C(6), 1258–1266 (2007)

    Google Scholar 

  15. J. Mulder, A.C. van der Woerd, W.A. Serdijn, A.H.M. van Roermund, A current-mode companding x domain integrator. Electron. Lett. 32, 198–199 (1996)

    Article  Google Scholar 

  16. W. Petchakit, A. Lorsawatsiri, W. Kiranon, C. Wongtaychathum, P. Wardkein, Current-mode squaring, square-rooting and vector summation circuits. AEÜ, Int. J. Electron. Commun. 64, 443–449 (2010)

    Article  Google Scholar 

  17. T. Rungkhum, A. Julsereewong, V. Riewruja, P. Julsereewong, A CMOS-based square-rooting circuit, in International Conference on Control, Automation and Systems (2007), pp. 161–164

    Chapter  Google Scholar 

  18. J.K. Seon, Design and application of precise analog computational circuits,. Analog Integr. Circuits Signal Process. 54, 55–66 (2008)

    Article  Google Scholar 

  19. H. Song, C. Kim, A MOS four-quadrant analog multiplier using simple two-input squaring circuits with source followers. IEEE J. Solid-State Circuits SC-25, 841–894 (1990)

    Article  Google Scholar 

  20. Z. Wang, A MOS four-quadrant analog multiplier with single-ended voltage output and improved temperature performance. IEEE J. Solid-State Circuits SC-26, 1293–1301 (1991)

    Article  Google Scholar 

  21. R.J. Wiegerink, Analysis and Synthesis of MOS Translinear Circuits (Kluwer, Boston, 1993)

    Google Scholar 

  22. S.H. Woo, J.T. Hwang, K. Lee, H.S. Koo, G.H. Cho, Wideband wide-tunable current-mode gamma corrector for HDTV applications. Electron. Lett. 35(23), 1988–1989 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Jen Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, KJ., Cheng, CJ., Chiu, SF. et al. CMOS Current-Mode Implementation of Fractional-Power Functions. Circuits Syst Signal Process 31, 61–75 (2012). https://doi.org/10.1007/s00034-011-9294-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9294-9

Keywords