Abstract
This paper presents maximum entropy power spectrum estimation of a 2-D information signal given that multirate low-resolution observations are available. Since the exact calculation of the 2-D maximum entropy power spectrum is not practical, we propose an efficient method utilizing slices in the 2-D discrete Fourier transform (DFT) domain and the duality in convex programming. We investigate the properties of our solution and provide numerical examples to demonstrate the performance of the new method.
Similar content being viewed by others
References
A.N. Amini, M.S. Takyar, T.T. Georgiou, A homotopy approach for multirate spectrum estimation, in Proc. 31st IEEE ICASSP, vol. 3, May 2006, pp. 532–535
A. Antoniou, W.S. Lu, Practical Optimization: Algorithms and Engineering Applications (Springer, New York, 2007)
J.P. Burg, Maximum entropy spectral analysis. Ph.D. dissertation, Stanford University, California (1975)
M.A. Ghouse, 2D grid architectures for the DFT and the 2D DFT. J. VLSI Signal Process. 5(1), 57–74 (1993)
H. Greenspan, Super-resolution in medical imaging. Comput. J. 52(1), 43–63 (2009)
O.S. Jahromi, B.A. Francis, R.H. Kwong, Spectrum estimation using multirate observations. IEEE Trans. Signal Process. 52(7), 1878–1890 (2004)
O.S. Jahromi, B.A. Francis, R.H. Kwong, Relative information of multi-rate sensors. Inf. Fusion 5(2), 119–129 (2004)
O.S. Jahromi, Multirate Statistical Signal Processing (Springer, Dordrecht, 2007)
E.T. Jaynes, On the rationale of maximum-entropy methods. Proc. IEEE 70(9), 939–952 (1982)
F. Kamalabadi, Multidimensional image reconstruction in astronomy: A unified approach based on regularization and state estimation concepts. IEEE Signal Process. Mag. 27(1), 86–96 (2010)
A. Kizilkaya, A.H. Kayran, Computation of the exact Cramer–Rao lower bound for 2-D ARMA parameter estimation-I: The quarter-plane case. IEEE Trans. Circuits Syst. II 53(1), 23–27 (2006)
S.W. Lang, J.H. McClellan, Multidimensional MEM spectral estimation. IEEE Trans. Acoust., Speech, Signal Process. 30(6), 880–887 (1982)
Y. Liang, T. Chen, Q. Pan, Multi-rate stochastic H ∞ filtering for networked multi-sensor fusion. Automatica 46(2), 437–444 (2010)
J.S. Lim, N.A. Malik, A new algorithm for two-dimensional maximum entropy power spectrum estimation. IEEE Trans. Acoust., Speech, Signal Process. 29(3), 401–413 (1981)
J.S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, New Jersey, 1990)
D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming (Springer, New York, 2008)
S.C. Park, M.K. Park, M.G. Kang, Super-resolution image reconstruction: A technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)
A.H. Sayed, Adaptive Filters (Wiley, New Jersey, 2008)
J.W. Scrofani, Theory of multirate signal processing with application to signal and image reconstruction. Ph.D. dissertation, Naval Postgraduate School, California (2005)
N. Srinivasa, K.R. Ramakrishnan, K. Rajgopal, On two-dimensional maximum entropy spectral estimation. IEEE Trans. Signal Process. 40(1), 241–244 (1992)
G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge, Wellesley, 1996)
A.K. Tanc, A.H. Kayran, Iterative maximum entropy power spectrum estimation for multirate systems. AEU-Int. J. Electron. Commun. 64(2), 93–98 (2010)
J.W. Woods, Multidimensional Signal, Image, and Video Processing and Coding (Academic Press, San Diego, 2006)
L.P. Yan, B.S. Liu, D.H. Zhou, Asynchronous multirate multisensor information fusion algorithm. IEEE Trans. Aerosp. Electron. Syst. 43(3), 1135–1146 (2007)
H. Yin, C. Ling, L. Qi, Convergence rate of Newton’s method for L 2 spectral estimation. Math. Program. 107(3), 539–546 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tanc, A.K., Kayran, A.H. Maximum Entropy Power Spectrum Estimation for 2-D Multirate Systems. Circuits Syst Signal Process 31, 271–281 (2012). https://doi.org/10.1007/s00034-011-9286-9
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00034-011-9286-9