Maximum Entropy Power Spectrum Estimation for 2-D Multirate Systems | Circuits, Systems, and Signal Processing Skip to main content

Advertisement

Log in

Maximum Entropy Power Spectrum Estimation for 2-D Multirate Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents maximum entropy power spectrum estimation of a 2-D information signal given that multirate low-resolution observations are available. Since the exact calculation of the 2-D maximum entropy power spectrum is not practical, we propose an efficient method utilizing slices in the 2-D discrete Fourier transform (DFT) domain and the duality in convex programming. We investigate the properties of our solution and provide numerical examples to demonstrate the performance of the new method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.N. Amini, M.S. Takyar, T.T. Georgiou, A homotopy approach for multirate spectrum estimation, in Proc. 31st IEEE ICASSP, vol. 3, May 2006, pp. 532–535

    Google Scholar 

  2. A. Antoniou, W.S. Lu, Practical Optimization: Algorithms and Engineering Applications (Springer, New York, 2007)

    MATH  Google Scholar 

  3. J.P. Burg, Maximum entropy spectral analysis. Ph.D. dissertation, Stanford University, California (1975)

  4. M.A. Ghouse, 2D grid architectures for the DFT and the 2D DFT. J. VLSI Signal Process. 5(1), 57–74 (1993)

    Article  MATH  Google Scholar 

  5. H. Greenspan, Super-resolution in medical imaging. Comput. J. 52(1), 43–63 (2009)

    Article  MathSciNet  Google Scholar 

  6. O.S. Jahromi, B.A. Francis, R.H. Kwong, Spectrum estimation using multirate observations. IEEE Trans. Signal Process. 52(7), 1878–1890 (2004)

    Article  MathSciNet  Google Scholar 

  7. O.S. Jahromi, B.A. Francis, R.H. Kwong, Relative information of multi-rate sensors. Inf. Fusion 5(2), 119–129 (2004)

    Article  Google Scholar 

  8. O.S. Jahromi, Multirate Statistical Signal Processing (Springer, Dordrecht, 2007)

    MATH  Google Scholar 

  9. E.T. Jaynes, On the rationale of maximum-entropy methods. Proc. IEEE 70(9), 939–952 (1982)

    Article  Google Scholar 

  10. F. Kamalabadi, Multidimensional image reconstruction in astronomy: A unified approach based on regularization and state estimation concepts. IEEE Signal Process. Mag. 27(1), 86–96 (2010)

    Article  Google Scholar 

  11. A. Kizilkaya, A.H. Kayran, Computation of the exact Cramer–Rao lower bound for 2-D ARMA parameter estimation-I: The quarter-plane case. IEEE Trans. Circuits Syst. II 53(1), 23–27 (2006)

    Article  Google Scholar 

  12. S.W. Lang, J.H. McClellan, Multidimensional MEM spectral estimation. IEEE Trans. Acoust., Speech, Signal Process. 30(6), 880–887 (1982)

    Article  MATH  Google Scholar 

  13. Y. Liang, T. Chen, Q. Pan, Multi-rate stochastic H filtering for networked multi-sensor fusion. Automatica 46(2), 437–444 (2010)

    Article  MATH  Google Scholar 

  14. J.S. Lim, N.A. Malik, A new algorithm for two-dimensional maximum entropy power spectrum estimation. IEEE Trans. Acoust., Speech, Signal Process. 29(3), 401–413 (1981)

    Article  MATH  Google Scholar 

  15. J.S. Lim, Two-Dimensional Signal and Image Processing (Prentice Hall, New Jersey, 1990)

    Google Scholar 

  16. D.G. Luenberger, Y. Ye, Linear and Nonlinear Programming (Springer, New York, 2008)

    MATH  Google Scholar 

  17. S.C. Park, M.K. Park, M.G. Kang, Super-resolution image reconstruction: A technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  18. A.H. Sayed, Adaptive Filters (Wiley, New Jersey, 2008)

    Book  Google Scholar 

  19. J.W. Scrofani, Theory of multirate signal processing with application to signal and image reconstruction. Ph.D. dissertation, Naval Postgraduate School, California (2005)

  20. N. Srinivasa, K.R. Ramakrishnan, K. Rajgopal, On two-dimensional maximum entropy spectral estimation. IEEE Trans. Signal Process. 40(1), 241–244 (1992)

    Article  Google Scholar 

  21. G. Strang, T. Nguyen, Wavelets and Filter Banks (Wellesley-Cambridge, Wellesley, 1996)

    Google Scholar 

  22. A.K. Tanc, A.H. Kayran, Iterative maximum entropy power spectrum estimation for multirate systems. AEU-Int. J. Electron. Commun. 64(2), 93–98 (2010)

    Article  Google Scholar 

  23. J.W. Woods, Multidimensional Signal, Image, and Video Processing and Coding (Academic Press, San Diego, 2006)

    Google Scholar 

  24. L.P. Yan, B.S. Liu, D.H. Zhou, Asynchronous multirate multisensor information fusion algorithm. IEEE Trans. Aerosp. Electron. Syst. 43(3), 1135–1146 (2007)

    Article  MathSciNet  Google Scholar 

  25. H. Yin, C. Ling, L. Qi, Convergence rate of Newton’s method for L 2 spectral estimation. Math. Program. 107(3), 539–546 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet H. Kayran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanc, A.K., Kayran, A.H. Maximum Entropy Power Spectrum Estimation for 2-D Multirate Systems. Circuits Syst Signal Process 31, 271–281 (2012). https://doi.org/10.1007/s00034-011-9286-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-011-9286-9

Keywords

Navigation