Varieties generated by completions | Algebra universalis Skip to main content
Log in

Varieties generated by completions

  • Published:
Algebra universalis Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We prove that persistently finite algebras are not created by completions of algebras, in any ordered discriminator variety. A persistently finite algebra is one without infinite simple extensions. We prove that finite measurable relation algebras are all persistently finite. An application of these theorems is that the variety generated by the completions of representable relation algebras does not contain all relation algebras. This answers Problem 1.1(1) from Maddux’s 2018 Algebra Universalis paper in the negative. At the same time, we confirm the suggestion in that paper that the finite maximal relation algebras constructed in M. Frias and R. Maddux’s 1997 Algebra Universalis paper are not in the variety generated by the completions of representable relation algebras. We prove that there are continuum many varieties between the variety generated by the completions of representable relation algebras and the variety of relation algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andréka, H., Givant, S.: Coset relation algebras. Algebra Univ. 79, 28 (2018)

    Article  MathSciNet  Google Scholar 

  2. Andréka, H., Givant, S., Németi, I.: Nonrepresentable relation algebras from groups. Rev. Symbolic Logic (2019). https://doi.org/10.1017/S1755020319000224

  3. Andréka, H., Jónsson, B., Németi, I.: Free algebras in discriminator varieties. Algebra Univ. 28, 401–447 (1991)

    Article  MathSciNet  Google Scholar 

  4. Andréka, H., Maddux, R.D., Németi, I.: Splitting in relation algebras. Proc. Am. Math. Soc. 111(4), 1085–1093 (1991)

    Article  MathSciNet  Google Scholar 

  5. Frias, M., Maddux, R.D.: Non-embeddable simple relation algebras. Algebra Univ. 38(2), 115–135 (1997)

    Article  MathSciNet  Google Scholar 

  6. Givant, S.: Relation algebras and groups. Algebra Univ. 79, 16 (2018)

    Article  MathSciNet  Google Scholar 

  7. Givant, S.: Introduction to Relation Algebras. Springer, Cham (2017)

    Book  Google Scholar 

  8. Givant, S.: Advanced Topics in Relation Algebras. Springer, Cham (2017)

    Book  Google Scholar 

  9. Givant, S., Andréka, H.: Groups and algebras of relations. Bull. Symb. Logic 8, 38–64 (2002)

    Article  MathSciNet  Google Scholar 

  10. Givant, S., Andréka, H.: A representation theorem for measurable relation algebras. J. Pure Appl. Logic 169(11), 1117–1189 (2018)

    Article  MathSciNet  Google Scholar 

  11. Givant, S., Andréka, H.: The variety of coset relation algebras. J. Symb. Logic 83(4), 1595–1609 (2018)

    Article  MathSciNet  Google Scholar 

  12. Hodkinson, I.: Atom structures of cylindric algebras and relation algebras. Ann. Pure Appl. Logic 89, 117–148 (1997)

    Article  MathSciNet  Google Scholar 

  13. Hirsch, R., Hodkinson, I.: Relation Algebras by Games. North-Holland, Amsterdam (2002)

    MATH  Google Scholar 

  14. Jipsen, P.: Discriminator varieties of Boolean algebras with residuated operations. In: Rauszer, C. (ed.) Algebraic Methods in Logic and in Computer Science, vol. 28, pp. 239–252. Banach Center Publications, Institute of Mathematics, Polish Academy of Science, Warsaw (1993)

    Google Scholar 

  15. Jónsson, B.: Varieties of relation algebras. Algebra Univ. 15, 273–298 (1982)

    Article  MathSciNet  Google Scholar 

  16. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part II. Am. J. Math. 74, 127–162 (1952)

    Article  Google Scholar 

  17. Khaled, M.: The free non-commutative cylindric algebras are not atomic. Logic J. IGPL 25(5), 673–685 (2017)

    Article  MathSciNet  Google Scholar 

  18. Khaled, M.: The finitely axiomatizable complete theories of non-associative arrow frames. Adv. Math. 346(13), 194–218 (2019)

    Article  MathSciNet  Google Scholar 

  19. Maddux, R.D.: A perspective on relation algebras. Algebra Univ. 31, 456–465 (1994)

    Article  MathSciNet  Google Scholar 

  20. Maddux, R.D.: Relation Algebras. North-Holland, Amsterdam (2006)

    MATH  Google Scholar 

  21. Maddux, R.D.: Subcompletions of representable relation algebras. Algebra Univ. 79, 20 (2018)

    Article  MathSciNet  Google Scholar 

  22. Monk, J.D.: Completions of Boolean algebras with operators. Math. Nachr. 46, 47–55 (1970)

    Article  MathSciNet  Google Scholar 

  23. Nation, J.B., Pogel, A.: The lattice of completions of an ordered set. Order 14(1), 1–7 (1997)

    Article  MathSciNet  Google Scholar 

  24. Werner, H.: Discriminator Algebras. Academie, Berlin (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajnal Andréka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andréka, H., Németi, I. Varieties generated by completions. Algebra Univers. 80, 30 (2019). https://doi.org/10.1007/s00012-019-0602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-019-0602-8

Keywords

Mathematics Subject Classification

Navigation