Abstract
We prove that Mal’tsev and Goursat categories may be characterized through variations of the Shifting Lemma, that is classically expressed in terms of three congruences R, S and T, and characterizes congruence modular varieties. We first show that a regular category \({\mathbb {C}}\) is a Mal’tsev category if and only if the Shifting Lemma holds for reflexive relations on the same object in \({\mathbb {C}}\). Moreover, we prove that a regular category \({\mathbb {C}}\) is a Goursat category if and only if the Shifting Lemma holds for a reflexive relation S and reflexive and positive relations R and T in \({\mathbb {C}}\). In particular this provides a new characterization of 2-permutable and 3-permutable varieties and quasi-varieties of universal algebras.
Similar content being viewed by others
References
Barr, M., Grillet, P.A., Van Osdol, D.H.: Exact categories and categories of sheaves. Lecture Notes in Math., vol. 236. Springer, Berlin (1971)
Borceux, F., Bourn, D.: Mal’cev, Protomodular, Homological and Semi-Abelian Categories, vol. 566. Kluwer, Dordrecht (2004)
Bourn, D., Gran, M.: Categorical Aspects of Modularity. Galois Theory, Hopf Algebras and Semiabelian Categories, Fields Instit. Commun., 43. Amer. Math. Soc., Providence RI, 77–100, (2004)
Bourn, D., Gran, M.: Normal sections and direct product decompositions. Comm. Algebra. 32(10), 3825–3842 (2004)
Carboni, A., Kelly, G.M., Pedicchio, M.C.: Some remarks on Maltsev and Goursat categories. Appl. Categ. Struct. 1(4), 385–421 (1993)
Carboni, A., Lambek, J., Pedicchio, M.C.: Diagram chasing in Mal’cev categories. J. Pure Appl. Algebra 69(3), 271–284 (1991)
Carboni, A., Pedicchio, M.C., Pirovano, N.: Internal graphs and internal groupoids in Mal’cev categories. In: Category theory 1991 (Montreal, PQ, 1991), CMS Conf. Proc., 13, Amer. Math. Soc., Providence, RI, 97–109 (1992)
Gran, M., Sterck, F., Vercruysse, J.: A semi-abelian extension of a theorem by Takeuchi. J. Pure Appl. Algebra. arXiv:1808.04998 (2018)
Gumm, H.P.: Geometrical methods in congruence modular algebras. Mem. Am. Math. Soc. 45, 286 (1983)
Hagemann, J., Mitschke, A.: On \(n\)-permutable congruences. Algebra Univ. 3, 8–12 (1973)
Janelidze, G.: A history of selected topics in categorical algebra I: From Galois theory to abstract commutators and internal groupoids. Categ. Gen. Algebraic Struct. Appl. 5(1), 1–54 (2016)
Johnstone, P.T., Pedicchio, M.C.: Remarks on continuous Mal’cev algebras. Rend. Istit. Mat. Univ. Trieste 25, 277–297 (1993)
Jónnsson, B.: On the representation of lattices. Math. Scand. 1, 193–206 (1953)
Kearnes, K., McKenzie, R.: Commutator theory for relatively modular quasivarieties. Trans. Am. Math. Soc. 331, 465–502 (1992)
Kiss, E.W.: Three remarks on the modular commutator. Algebra Univ. 29, 455–476 (1992)
Mal’cev, A.I.: On the general theory of algebraic systems. Mat. Sbornik N.S. 35, 3–20 (1954)
Martins-Ferreira, N., Rodelo, D., Van der Linden, T.: An observation on n-permutability. Bull. Belg. Math. Soc. Simon Stevin 21(2), 223–230 (2014)
Mitschke, A.: Implication algebras are \(3\)-permutable and \(3\)-distributive. Algebra Univ. 1, 182–186 (1971)
Pedicchio, M.C., Vitale, E.M.: On the abstract characterization of quasi-varieties. Algebra Univ. 43, 269–278 (2000)
Selinger, P.: Dagger compact closed categories and completely positive maps. Electron. Notes Theor. Comput. Sci. 170, 139–163 (2007)
Smith, J.D.H.: Mal’cev varieties. Lecture Notes in Math, vol. 554. Springer, Berlin (1976)
Tull, S.: Conditions for an \(n\)-permutable category to be Mal’tsev. Cah. Topol. Géom. Différ. Catég. 58(3 & 4), 189–194 (2017)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
D. Rodelo acknowledges partial financial assistance by Centro de Matemática da Universidade de Coimbra—UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020. I. Tchoffo Nguefeu acknowledges financial assistance by Fonds de la Recherche Scientifique-FNRS Crédit Bref Séjour à l’étranger 2018/V 3/5/033-IB/JN-11440.
Rights and permissions
About this article
Cite this article
Gran, M., Rodelo, D. & Nguefeu, I.T. Variations of the Shifting Lemma and Goursat categories. Algebra Univers. 80, 2 (2019). https://doi.org/10.1007/s00012-018-0575-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00012-018-0575-z
Keywords
- Mal’tsev categories
- Goursat categories
- Shifting Lemma
- Congruence modular varieties
- 3-permutable varieties