Variations of the Shifting Lemma and Goursat categories | Algebra universalis
Skip to main content

Variations of the Shifting Lemma and Goursat categories

  • Published:
Algebra universalis Aims and scope Submit manuscript

Abstract

We prove that Mal’tsev and Goursat categories may be characterized through variations of the Shifting Lemma, that is classically expressed in terms of three congruences R, S and T, and characterizes congruence modular varieties. We first show that a regular category \({\mathbb {C}}\) is a Mal’tsev category if and only if the Shifting Lemma holds for reflexive relations on the same object in \({\mathbb {C}}\). Moreover, we prove that a regular category \({\mathbb {C}}\) is a Goursat category if and only if the Shifting Lemma holds for a reflexive relation S and reflexive and positive relations R and T in \({\mathbb {C}}\). In particular this provides a new characterization of 2-permutable and 3-permutable varieties and quasi-varieties of universal algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barr, M., Grillet, P.A., Van Osdol, D.H.: Exact categories and categories of sheaves. Lecture Notes in Math., vol. 236. Springer, Berlin (1971)

    Book  Google Scholar 

  2. Borceux, F., Bourn, D.: Mal’cev, Protomodular, Homological and Semi-Abelian Categories, vol. 566. Kluwer, Dordrecht (2004)

    Book  Google Scholar 

  3. Bourn, D., Gran, M.: Categorical Aspects of Modularity. Galois Theory, Hopf Algebras and Semiabelian Categories, Fields Instit. Commun., 43. Amer. Math. Soc., Providence RI, 77–100, (2004)

  4. Bourn, D., Gran, M.: Normal sections and direct product decompositions. Comm. Algebra. 32(10), 3825–3842 (2004)

    Article  MathSciNet  Google Scholar 

  5. Carboni, A., Kelly, G.M., Pedicchio, M.C.: Some remarks on Maltsev and Goursat categories. Appl. Categ. Struct. 1(4), 385–421 (1993)

    Article  MathSciNet  Google Scholar 

  6. Carboni, A., Lambek, J., Pedicchio, M.C.: Diagram chasing in Mal’cev categories. J. Pure Appl. Algebra 69(3), 271–284 (1991)

    Article  MathSciNet  Google Scholar 

  7. Carboni, A., Pedicchio, M.C., Pirovano, N.: Internal graphs and internal groupoids in Mal’cev categories. In: Category theory 1991 (Montreal, PQ, 1991), CMS Conf. Proc., 13, Amer. Math. Soc., Providence, RI, 97–109 (1992)

  8. Gran, M., Sterck, F., Vercruysse, J.: A semi-abelian extension of a theorem by Takeuchi. J. Pure Appl. Algebra. arXiv:1808.04998 (2018)

  9. Gumm, H.P.: Geometrical methods in congruence modular algebras. Mem. Am. Math. Soc. 45, 286 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Hagemann, J., Mitschke, A.: On \(n\)-permutable congruences. Algebra Univ. 3, 8–12 (1973)

    Article  MathSciNet  Google Scholar 

  11. Janelidze, G.: A history of selected topics in categorical algebra I: From Galois theory to abstract commutators and internal groupoids. Categ. Gen. Algebraic Struct. Appl. 5(1), 1–54 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Johnstone, P.T., Pedicchio, M.C.: Remarks on continuous Mal’cev algebras. Rend. Istit. Mat. Univ. Trieste 25, 277–297 (1993)

    MathSciNet  MATH  Google Scholar 

  13. Jónnsson, B.: On the representation of lattices. Math. Scand. 1, 193–206 (1953)

    Article  MathSciNet  Google Scholar 

  14. Kearnes, K., McKenzie, R.: Commutator theory for relatively modular quasivarieties. Trans. Am. Math. Soc. 331, 465–502 (1992)

    Article  MathSciNet  Google Scholar 

  15. Kiss, E.W.: Three remarks on the modular commutator. Algebra Univ. 29, 455–476 (1992)

    Article  MathSciNet  Google Scholar 

  16. Mal’cev, A.I.: On the general theory of algebraic systems. Mat. Sbornik N.S. 35, 3–20 (1954)

    MathSciNet  Google Scholar 

  17. Martins-Ferreira, N., Rodelo, D., Van der Linden, T.: An observation on n-permutability. Bull. Belg. Math. Soc. Simon Stevin 21(2), 223–230 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Mitschke, A.: Implication algebras are \(3\)-permutable and \(3\)-distributive. Algebra Univ. 1, 182–186 (1971)

    Article  MathSciNet  Google Scholar 

  19. Pedicchio, M.C., Vitale, E.M.: On the abstract characterization of quasi-varieties. Algebra Univ. 43, 269–278 (2000)

    Article  MathSciNet  Google Scholar 

  20. Selinger, P.: Dagger compact closed categories and completely positive maps. Electron. Notes Theor. Comput. Sci. 170, 139–163 (2007)

    Article  Google Scholar 

  21. Smith, J.D.H.: Mal’cev varieties. Lecture Notes in Math, vol. 554. Springer, Berlin (1976)

    Book  Google Scholar 

  22. Tull, S.: Conditions for an \(n\)-permutable category to be Mal’tsev. Cah. Topol. Géom. Différ. Catég. 58(3 & 4), 189–194 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marino Gran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

D. Rodelo acknowledges partial financial assistance by Centro de Matemática da Universidade de Coimbra—UID/MAT/00324/2013, funded by the Portuguese Government through FCT/MCTES and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020. I. Tchoffo Nguefeu acknowledges financial assistance by Fonds de la Recherche Scientifique-FNRS Crédit Bref Séjour à l’étranger 2018/V 3/5/033-IB/JN-11440.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gran, M., Rodelo, D. & Nguefeu, I.T. Variations of the Shifting Lemma and Goursat categories. Algebra Univers. 80, 2 (2019). https://doi.org/10.1007/s00012-018-0575-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00012-018-0575-z

Keywords

Mathematics Subject Classification