Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder | Cognitive Computation Skip to main content

Advertisement

Log in

Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

In this paper, we present a multi-region ensemble classifier approach (MRECA) using a cognitive ensemble of classifiers for accurate identification of attention-deficit/hyperactivity disorder (ADHD) subjects. This approach is developed using the features extracted from the structural MRIs of three different developing brain regions, viz., the amygdala, caudate, and hippocampus. For this study, the structural magnetic resonance imaging (sMRI) data provided by the ADHD-200 consortium has been used to identify the following three classes of ADHD, viz., ADHD-combined, ADHD-inattentive, and the TDC (typically developing control). From the sMRIs of the amygdala, caudate, and hippocampus regions of the brain from the ADHD-200 data, multiple feature sets were obtained using a feature-selecting genetic algorithm (FSGA), in a wraparound approach using an extreme learning machine (ELM) basic classifier. An improved crossover operator for the FSGA has been developed for obtaining higher accuracies compared with other existing crossover operators. From the multiple feature sets and the corresponding ELM classifiers, a classifier-selecting genetic algorithm (CSGA) has been developed to identify the top performing feature sets and their ELM classifiers. These classifiers are then combined using a risk-sensitive hinge loss function to form a risk-sensitive cognitive ensemble classifier resulting in a simultaneous multiclass classification of ADHD with higher accuracies. Performance evaluation of the multi-region ensemble classifier is presented under the following three scenarios, viz., region-based individual (best) classifier, region-based ensemble classifier, and finally a multiple-region-based ensemble classifier. The study results clearly indicate that the proposed “multi-region ensemble classification approach” (MRECA) achieves a much higher classification accuracy of ADHD data (normally a difficult problem because of the variations in the data) compared with other existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Diagnostic and Statistical Manual of Mental Disorders, fifth edn. (American Psychiatric Association).

  2. Polanczyk G, DeLima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. Am J Psychiatr. 2007;164:942–8.

    Article  PubMed  Google Scholar 

  3. Biederman J. Attention-deficit/hyperactivity disorder: a life-span perspective. J Clin Psychiatry. 1998;59(7):4–16.

    PubMed  Google Scholar 

  4. Frodl T, Skokauskas N. Meta-analysis of structural MRI studies in children and adults with attention-deficit hyperactivity disorder indicates treatment effects. Acta Psychiatr Scand. 2012;125:114–26.

    Article  CAS  PubMed  Google Scholar 

  5. Doshi JA, Hodgkins P, Kahle J, Sikirica V, Cangelosi MJ, Setyawan J, et al. Economic impact of childhood and adult attention-deficit/hyperactivity disorder in the United States. J Am Acad Child Adolesc Psychiatry. 2012;51(10):990–1002.

    Article  PubMed  Google Scholar 

  6. Davenport N, Karatekin C, White T, Lim KO. Differential fractional anisotropy abnormalities in adolescents with ADHD or schizophrenia. Psychiatry Res. 2010;181:193–8.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Selikowitz M. ADHD. Oxford press; 2009.

  8. Fuente ADL, Xia S, Branch C, Li X. A review of attention-deficit/hyperactivity disorder from the perspective of brain networks. Front Hum Neurosci. 2013;7(192):1–6.

    Google Scholar 

  9. Wolosin SM, Richardson ME, Hennessey JG, Denckla MB, Mostofsky SH. Abnormal cerebral cortex structure in children with ADHD. Hum Brain Mapp. 2009;30(1):175–84.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67:728–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whalen PJ, Phelps EA. The human amygdala. Guilford Press, 2009.

  12. Markowitsch H. Differential contribution of right and left amygdala to affective information processing. Behav Neurol. 1998;11(4):233–44.

    Article  PubMed  Google Scholar 

  13. Nestler EJ, Hyman SE, Holtzman DM, Malenka RC. Molecular neuropharmacology: a foundation for clinical neuroscience (3d ed.). McGraw Hill; 2009.

  14. Martin JH Neuroanatomy: text and atlas, 4th edn. McGraw Hill; 2003.

  15. Castellanos FX, Giedd JN, Marsh WL, Hamburger SD, Vaituzis AC, Dickstein DP, et al. Quantitative brain magnetic resonance 560 imaging in attention-deficit hyperactivity disorder. Arch Gen Psychiatry. 1996;53:607–16.

    Article  CAS  PubMed  Google Scholar 

  16. Kyeong S, Park S, Cheon K-A, Kim J-J, Song D-H, Kim E. A new approach to investigate the association between brain functional connectivity and disease characteristics of attention-deficit/hyperactivity disorder: topological neuroimaging data analysis. PLoS One. 2015;10(9):e0137296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nachamai M. Sub-type discernment of attention-deficit hyperactive disorder in children using a cluster partitioning algorithm. 2016; Indian J Sci Technol 9(8).

  18. Wang J-B, Zheng L-J, Cao Q-J, Wang Y-F, Sun L, Zang Y-F, et al. Inconsistency in abnormal brain activity across cohorts of ADHD-200 in children with attention-deficit hyperactivity disorder. Front Neurosci. 2017;11:320.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bellec P, Chu C, Chouinard-Decorte F, Benhajali Y, Margulies DS, Craddock RC. The Neuro Bureau ADHD-200 preprocessed repository. NeuroImage. 2017;144(Part B):275–86.

    Article  PubMed  Google Scholar 

  20. Madureira DQM, Carvalho LAV, Cheniaux E. Focus modulated by mesothalamic dopamine: consequences in Parkinson’s disease and attention-deficit hyperactivity disorder. Cogn Comput. 2010;2(1):31–49.

    Article  Google Scholar 

  21. Zou L, Xu S, Ma Z, Lu J, Su W. Attentional automatic removal of artifacts from attention-deficit hyperactivity disorder electroencephalograms based on independent component analysis. Cogn Comput. 2013;5(2):225–33.

    Article  Google Scholar 

  22. Anderson A, Douglas PK, Kerr WT, Haynes VS, Yuille AL, Xie J, et al. Non-negative matrix factorization of multimodal MRI, fMRI and phenotypic data reveals differential changes in default mode subnetworks in ADHD. NeuroImage. 2014;19(102).

  23. Iannaccone R, Hauser TU, Ball J, Brandeis D, Walitza S, Brem S. Classifying adolescent attention-deficit/hyperactivity disorder (ADHD) based on functional and structural imaging. Eur Child Adolesc Psychiatry. 2015;24(10):1279–89.

    Article  PubMed  Google Scholar 

  24. Chang CW, Ho CC and Chen JH. ADHD classification by a texture analysis of anatomical brain MRI data, Front Syst Neurosci. 2012; 6.

  25. Kobel M, Bechtel N, Specht K, Klarhofer M, Weber P, Scheffler K, et al. Structural and functional imaging approaches in attention-deficit/hyperactivity disorder: does the temporal lobe play a key role? Psychiatry Res. 2010;183:230–6.

    Article  PubMed  Google Scholar 

  26. Cao M, Shu N, Cao Q, Wang Y, He Y. Imaging functional and structural brain connectomics in attention-deficit/hyperactivity disorder. Mol Neurobiol. 2014;50(3):1111–23.

    Article  CAS  PubMed  Google Scholar 

  27. Rangarajan B, Suresh S, Mahanand BS. Identification of potential biomarkers in the hippocampus region for the diagnosis of ADHD using PBL-McRBFN approach, Proceeding of 2014 13th International Conference on Control Automation Robotics and Vision (ICARCV) 2014; 2, 17–22.

  28. Sabuncu MR, Konukoglu E. Clinical prediction from structural brain MRI scans: a large-scale empirical study. Neuroinformatics. 2015;13(1):31–46.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mahanand BS, Savitha R, Suresh S. Computer aided diagnosis of ADHD using brain magnetic resonance images. Advances in Artificial Intelligence. 2013; 386–395.

  30. Sato JR, Hoexter MQ, Fujita A, Rohde LA. Evaluation of pattern recognition and feature extraction methods in ADHD prediction, Front Syst Neurosci. 2012; 6.

  31. Eloyan A, Muschelli J, Nebel MB, Liu H, Han F, Zhao T, Barber AD, Joel S, Pekar JJ, Mostofsky SH, Caffo B. Automated diagnoses of attention-deficit hyperactive disorder using magnetic resonance imaging., Front Syst Neurosci 2012; 6.

  32. Colby JB, Rudie JD, Brown JA, Douglas PK, Cohen MS, Shehzad Z. Insights into multimodal imaging classification of ADHD. Front Syst Neurosci (59) (6) 1–18.

  33. Peng X, Lin P, Zhang T, Wang J. Extreme learning machine-based classification of ADHD using brain structural MRI data. PLoS One. 2013;8:e79476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sachnev V. An efficient classification scheme for ADHD problem based on binary-coded genetic algorithm and McFIS, Proceeding on 2015 International Conference on Cognitive Computing and Information Processing (CCIP) 2015; 1–6.

  35. Maldjian J, Laurienti P, Kraft R, Burdette J. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage. 2003;19(3):1233–9.

    Article  PubMed  Google Scholar 

  36. Murugan MS, Suresh S, Ganguli R, Mani V. Target vector optimization of composite box beam using real-coded genetic algorithm: a decomposition approach. Struct Multidiscip Optim. 2007;33:131–46.

    Article  Google Scholar 

  37. Suresh S, Babu V, Sundararajan N. Image quality measurement using sparse extreme learning machine classifier, 2006 9th International Conference on Control, Automation, Robotics and Vision 2006; pp. 1–6.

  38. Huang G-B, Zhu QY, Siew CK. Extreme learning machine: theory and application. Neurocomputing. 2006;70:489–501.

    Article  Google Scholar 

  39. Huang G-B. An insight into extreme learning machines: random neurons, random features and kernels. Cogn Comput. 2014;6:376–90.

    Article  Google Scholar 

  40. Huang G-B. What are extreme learning machines? Filling the gap between frank Rosenblatt’s dream and John von Neumann’s puzzle. Cogn Comput. 2015;7:263–78.

    Article  Google Scholar 

  41. Sachnev V, Savitha R, Suresh S, Kim HJ, Hwang HJ. A cognitive ensemble of extreme learning machines for steganalysis based on risk-sensitive hinge loss function. Cogn Comput. 2014;7(1):103–10.

    Article  Google Scholar 

  42. Milham MP, Fair D, Mennes M, Mostofsky SH. The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front Syst Neurosci. 2012;6(62):1–5.

    Google Scholar 

  43. Friston K, Ashburner J, Kiebel S, Nichols T, Penny W (eds.). Statistical parametric mapping: the analysis of functional brain images. Academic Press; 2007).

  44. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38(1):95–113.

    Article  PubMed  Google Scholar 

  45. Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. U Michigan Press; 1975.

  46. Suresh S, Saraswathi S, Sundararajan N. Performance enhancement of extreme learning machine for multi-category sparse data classification problems. Eng Appl Artif Intell. 2010;23(7):1149–57.

    Article  Google Scholar 

  47. Suresh S, Omkar SN, Mani V, Prakash TNG. Lift coefficient prediction at high angle of attack using recurrent neural network. Aerosp Sci Technol. 2003;7:595–602.

    Article  Google Scholar 

  48. Rong H-J, Jia Y-X, Zhao G-S. Aircraft recognition using modular extreme learning machine. Neurocomputing. 2014;128:166–74.

    Article  Google Scholar 

  49. Rong H-J, Ong Y-S, Tan A-H, Zhu Z. A fast pruned-extreme learning machine for classification problem. Neurocomputing. 2008;72:1–3.

    Article  Google Scholar 

  50. Liu N, Wang H. Ensemble Based extreme learning machine. IEEE Signal Processing Letters. 2010;17(8):754–7.

    Article  Google Scholar 

  51. Yu Q, van Heeswijk M, Miche Y, Nian R, He B, Séverin E, et al. Ensemble delta test-extreme learning machine (DT-ELM) for regression. Neurocomputing. 2014;129(10):153–8.

    Article  Google Scholar 

  52. Cao J, Lin Z, Huang G-B, Liu N. Voting based extreme learning machine. Inf Sci. 2012;185(1):66–77.

    Article  Google Scholar 

  53. Qureshi MNI, Min B, Jo HJ, Lee B. Multiclass classification for the differential diagnosis on the ADHD subtypes using recursive feature elimination and hierarchical extreme learning machine: structural MRI study. PLoS One. 2016;6(4):249–68.

    Google Scholar 

  54. Dai D, Wang J, Hua J, He H. Classification of ADHD children through multimodal magnetic resonance imaging. Front Syst Neurosci. 2012;6(63):1–8.

    Google Scholar 

  55. Oishi K, Faria AV, Yoshida S, Chang L, Mori S. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging. Int J Dev Neurosci. 2013;31(7):512–24.

    Article  PubMed  Google Scholar 

  56. Davatzikos C. Why voxel-based morphometric analysis should be used with great caution when characterizing group differences. NeuroImage. 2004;23(1):17–20.

    Article  PubMed  Google Scholar 

  57. Chiapponi C, Piras F, Piras F, Fagioli S, Caltagirone C, Spalletta G. Cortical grey matter and subcortical white matter brain microstructural changes in schizophrenia are localized and age independent: a case-control diffusion tensor imaging study. PLoS One. 2013;8(10):e75115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the ADHD-200 consortium and the Neuro Bureau for making the MRI data available. We would like to thank the ADHD-200 Pre-processed initiative and Dr. Carlton Chu for the Burner pipeline.

Funding

This work was supported by Catholic University of Korea, Research Funds 2016, National Research Foundation of Korea, grant #2011-0013695.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasily Sachnev.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals/Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachnev, V., Suresh, S., Sundararajan, N. et al. Multi-Region Risk-Sensitive Cognitive Ensembler for Accurate Detection of Attention-Deficit/Hyperactivity Disorder. Cogn Comput 11, 545–559 (2019). https://doi.org/10.1007/s12559-019-09636-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12559-019-09636-0

Keywords

Navigation