Abstract
We give an equivalent variational inequality formulation for a general class of equilibrium problems based upon auction decision rules. We show that a general relaxation iterative process with conditional gradient extrapolation ensures convergence to a solution under rather mild assumptions.
Similar content being viewed by others
References
Arrow K.J., Hahn F.H. (1971) General Competitive Analysis. Holden Day, New York
Moulin H. (1981) Théorie des Jeux pour l’Économie et la Politique. Hermann, Paris
Okuguchi K.,Szidarovszky F. (1990) The Theory of Oligopoly with Multi-product Firms. Springer, Berlin Heidelberg New York
Konnov I.V. (2006) On modelling of auction type markets (in Russian). Issled. po Informatike 10, 73–76
Sukharev A.G., Timokhov A.V., Fedorov V.V. (1986) A Course in Optimization Methods (in Russian). Nauka, Moscow
Facchinei F., Pang J.-S. (2003) Finite-Dimensional Variational Inequalities and Complementarity Problems (two volumes). Springer, Berlin Heidelberg New York
Bianchi M., Pini R. (2005) Coercivity conditions for equilibrium problems. J. Optim. Theory Appl. 124, 79–92
Konnov I.V. (1993) Combined relaxation methods for finding equilibrium points and solving related problems. Russ. Math. (Iz. VUZ) 37(2): 44–51
Konnov I.V. (2001) Combined Relaxation Methods for Variational Inequalities. Springer, Berlin Heidelberg New York
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Konnov, I.V. On variational inequalities for auction market problems. Optimization Letters 1, 155–162 (2007). https://doi.org/10.1007/s11590-006-0004-7
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-006-0004-7