The Monogenic Scale Space on a Rectangular Domain and its Features | International Journal of Computer Vision Skip to main content
Log in

The Monogenic Scale Space on a Rectangular Domain and its Features

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

In this paper we present a novel method to implement the monogenic scale space on a rectangular domain. The monogenic scale space is a vector valued scale space based on the Poisson scale space, which establishes a sophisticated alternative to the Gaussian scale space. Previous implementations of the monogenic scale space are Fourier transform based, and therefore suffer from the implicit periodicity in case of finite domains.

The features of the monogenic scale space, including local amplitude, local phase, local orientation, local frequency, and phase congruency, are much easier to interpret in terms of image features evolving through scale than in the Gaussian case. Furthermore, applying results from harmonic analysis, relations between the features are obtained which improve the understanding of image analysis. As applications, we present a very simple but still accurate approach to image reconstruction from local amplitude and local phase and a method for extracting the evolution of lines and edges through scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahmed, N., Natarajan, T., and Rao, K.R. 1974. Discrete cosine transform. IEEE Transactions on Computers, C-23(1):90–93.

    Google Scholar 

  • Behar, J., Porat, M., and Zeevi, Y.Y. 1992. Image reconstruction from localized phase. IEEE Transactions on Signal Processing, 40(4):736–743.

    Article  Google Scholar 

  • Colton, D. 1988. Partial Differential Equations. Random House: New York.

    Google Scholar 

  • Damon, J. 1995. Local Morse theory for solutions of the heat equation and Gaussian blurring. Journal of Differential Equations, 115(2):368–401.

    Article  Google Scholar 

  • Duits, R., Felsberg, M., and Florack, L.M.J. α scale spaces on a bounded domain. In Scale Space ′03 (2003), L.D. Griffin and M. Lillholm (Eds.), vol. 2695 of LNCS, Springer: Heidelberg, pp. 494–510.

  • Duits, R., Florack, L.M.J., de Graaf, J., and ter Haar Romeny, B.M. 2004. On the axioms of scale space theory. Journal of Mathematical Imaging and Vision, 20(3):267–298.

    Article  MathSciNet  Google Scholar 

  • Felsberg, M. 2002a. Disparity from monogenic phase. In 24. DAGM Symposium Mustererkennung, Zürich, L. v. Gool (Ed.), vol. 2449 of Lecture Notes in Computer Science, Springer: Heidelberg, pp. 248–256.

  • Felsberg, M. 2002b. Low-Level Image Processing with the Structure Multivector. PhD thesis, Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel, TR no. 0203, available at http://www.informatik.uni-kiel.de/reports/2002/0203.html

  • {Felsberg, M. and Sommer, G.} 2000. A new extension of linear signal processing for estimating local properties and detecting features. In 22. DAGM Symposium Mustererkennung, Kiel, G. Sommer, N. Krüger, and C. Perwass (Eds.), Springer: Heidelberg, pp. 195–202.

  • Felsberg, M. and Sommer, G. (2001a). The monogenic signal. IEEE Transactions on Signal Processing, 49(12):3136–3144.

    Article  Google Scholar 

  • Felsberg, M., and Sommer, G. 2001b. Scale adaptive filtering derived from the Laplace equation. In 23. DAGM Symposium Mustererkennung, München, B. Radig and S. Florczyk (Eds.) vol. 2191 of Lecture Notes in Computer Science, Springer: Heidelberg, pp. 124–131.

  • Felsberg, M. and Sommer, G. 2004. The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision, 21(1):5– 26.

    Article  Google Scholar 

  • Florack, L. and Kuijper, A. 2000. The topological structure of scale-space images. Journal of Mathematical Imaging and Vision, 12(1):65–79.

    Article  Google Scholar 

  • Granlund, G.H. and Knutsson, H. 1995. Signal Processing for Computer Vision. Kluwer Academic Publishers: Dordrecht.

    Google Scholar 

  • Hein, W. 1990. Struktur- und Darstellungstheorie der klassischen Gruppen. Springer: Berlin.

    Google Scholar 

  • Jain, A.K. 1989. Fundamentals of Digital Image Processing. Prentice-Hall.

  • Koenderink, J.J. 1984. The structure of images. Biological Cybernetics, 50:363–370.

    Article  PubMed  MathSciNet  Google Scholar 

  • Koenderink, J.J. 1989. A hitherto unnoticed singularity of scale-space. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(11):1222–1224.

    Article  Google Scholar 

  • Kovesi, P. 1999. Image features from phase information. Videre: Journal of Computer Vision Research, 1(3).

  • Larkin, K.G., Bone, D.J., and Oldfield, M.A. 2001. Natural demodulation of two-dimensional fringe patterns: I. general background of the spiral phase quadrature transform. Journal of the Optical Society of America A, 18(8):1862– 1870.

    Google Scholar 

  • Papoulis, A. 1962. The Fourier Integral and its Applications. McGraw-Hill: New York.

    Google Scholar 

  • Pauwels, E.J., Van Gool, L.J., Fiddelaers, P., and Moons, T. 1995. An extended class of scale-invariant and recursive scale space filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(7):691–701.

    Article  Google Scholar 

  • Silvester, P.P. and Ferrari, R.L. 1983. Finite Elements for Electical Engineers. Cambridge University Press.

  • Weickert, J., Ishikawa, S., and Imiya, A. 1999. Linear scale-space has first been proposed in Japan. Mathematical Imaging and Vision, 10:237–252.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Felsberg.

Additional information

First online version published in June, 2005

This work has been supported by DFG Grant FE 583/1-2.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felsberg, M., Duits, R. & Florack, L. The Monogenic Scale Space on a Rectangular Domain and its Features. Int J Comput Vision 64, 187–201 (2005). https://doi.org/10.1007/s11263-005-1843-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-005-1843-x

Keywords

Navigation