Abstract
In this paper, a quantum signature scheme with semi-trusted arbitrator is proposed. In our scheme, the signatory encodes the classical message into non-orthogonal quantum sequence. Then, he generates the secret parameters with the key-controlled hash functions. The secret parameters are used to control the Pauli operation and Hadamard operation to encrypt the quantum message. After that the quantum message is entangled as the chained quantum sequence, which is used as the quantum signature. The quantum signature is verified by the chained decryption. The arbitrator and signature receiver need not perform the quantum swap test. The partners need not prepare the redundant decoy particles for the use of checking the quantum channel, because the disturbances can break the entangled chain such that the disturbed signature cannot pass the signature verification. Our scheme is secure against the forgery attack. Even the arbitrator cannot effectively forge a quantum signature. Therefore, the arbitrator can be semi-trusted. Our scheme has more advantages in security and efficiency than the similar arbitrated ones.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
My manuscript has no associated data.
References
Diffie, W., Hellman, M.: New direction in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)
Rivest, R.L., Shamir, A., Adelman, L.: A method for obtain digital signatures and public-key cryptosystem. Commun. ACM 21(2), 120–126 (1978)
Rabin M. O.: Digital signature and public-key functions as intractable as factorization. MIT Laboratory for computer Science, Technical Report, MIT/LCS/TR212, Jan 1979
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)
Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)
Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)
Huang, Y., Su, Z., Zhang, F., et al.: Quantum algorithm for solving hyper elliptic curve discrete logarithm problem. Quantum Inf. Process. 19, 62 (2020)
Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv: https://arxiv.org/abs/quant-ph/0105032 (2001)
Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)
Yang, Y.G., Zhou, Z., Teng, Y.W., et al.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61, 773–778 (2011)
Zou, X.F., Qiu, D.W., Mateus, P.: Security analyses and improvement of arbitrated quantum signature with an untrusted arbitrator. Int. J. Theor. Phys. 52(9), 3295–3305 (2013)
Luo, M.X., Chen, X.B., Deng, Y., et al.: Quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 51, 2135–2142 (2012)
Kang, M.S., Hong, C.H., Heo, J., et al.: Comment on “quantum signature scheme with weak arbitrator.” Int. J. Theor. Phys. 53, 1862–1866 (2014)
Zhang, M.L., Liu, Y.H., Nie, M., et al.: Arbitrated quantum signature of quantum messages with a semi-honest arbitrator. Int. J. Theor. Phys. 57, 1310–1318 (2018)
Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)
Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 42325 (2010)
Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)
Wang, C., Liu, J.W., Shang, T.: Enhanced arbitrated quantum signature scheme using Bell states. Chin. Phys. B 23(6), 060309 (2014)
Wang, Y., Xu, K., Guo, Y.: A chaos-based arbitrated quantum signature scheme in quantum cryptosystem. Int. J. Theor. Phys. 53(1), 28–38 (2014)
Zhang, Y., Zeng, J.: An improved arbitrated quantum scheme with Bell states. Int. J. Theor. Phys. 57, 994–1003 (2018)
Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)
Jiang, D.H., Hu, Q.Z., Liang, X.Q., et al.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18(9), 268 (2019)
Li, F.G., Shi, J.H.: An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Quantum Inf. Process. 14(6), 2171–2181 (2015)
Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)
Liu, F., Zhang, K., Cao, T.: Security weaknesses in arbitrated quantum signature protocols. Int. J. Theor. Phys. 53(1), 277–288 (2014)
Li, Q., Chan, W.H., Wu, C., et al.: On the existence of quantum signature for quantum messages. Int. J. Theor. Phys. 52(12), 4335–4341 (2013)
Zhang, K.J., Qin, S.J., Sun, Y., et al.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)
Li, Q., Li, C., Wen, Z., Zhao, W., et al.: On the security of arbitrated quantum signature schemes. J. Phys. A: Math. Theor. 46(1), 015307 (2013)
Hwang, T., Luo, Y.P., Chong, S.K.: Comment on: “Security analysis and improvements of arbitrated quantum signature schemes.” Phys. Rev. A 85, 056301 (2012)
Zhang, L., Sun, H.W., Zhang, K.J., et al.: The security problems in some novel arbitrated quantum signature protocols. Int. J. Theor. Phys. 56, 2433–2444 (2017)
Xin, X.J., He, Q.Q., Wang, Z., et al.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik 189, 23–31 (2019)
He, Q., Xin, X., Yang, Q.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20, 26 (2021)
Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 70 (2017)
Zheng, X.Y., Kuang, C.: Arbitration quantum signature protocol based on XOR encryption. Int. J. Quantum Inf. 18(5), 2050025 (2020)
Ding, L., Xin, X., Li, C., et al.: Security analysis and improvements of XOR arbitrated quantum signature-based GHZ state. Mod. Phys. Lett. A (2022). https://doi.org/10.1142/S0217732322500080
Wang, M.Q., Wang, X., Zhan, T.: An efficient quantum digital signature for classical messages. Quantum Inf. Process. 17(10), 275 (2018)
Rains E., et al.: Handbook of Coding Theory, 177C294 pp. math.CO/0208001 (1998)
Wang, M.Q., Wang, X., Zhan, T.: Unconditionally secure multi-party quantum commitment scheme. Quantum Inf. Process. 17(2), 31 (2018)
Wen, X., Chen, Y., Fang, J.: An inter-bank e-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12, 549–558 (2013)
Cai, X.Q., Wang, X.X., Wang, T.Y.: Fair and optimistic contract signing based on quantum cryptography. Int. J. Theor. Phys. 58, 3677–3683 (2019)
Zheng, M., Xue, K., Li, S., et al.: A practical quantum designated verifier signature scheme for E-voting applications. Quantum Inf. Process. 20, 230 (2021)
Gao, W., Yang, L.: Quantum election protocol based on quantum public key cryptosystem. Secur. Commun. Networks 2021, 5551249 (2021)
Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)
Bennett C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)
Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)
Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)
Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)
Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)
Acknowledgements
This work is supported by the Key Scientific Research Project of Colleges and Universities in Henan Province (CN) (No.22A413010 and No. 21A520050).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xin, X., Ding, L., Yang, Q. et al. Efficient chain-encryption-based quantum signature scheme with semi-trusted arbitrator. Quantum Inf Process 21, 246 (2022). https://doi.org/10.1007/s11128-022-03593-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-022-03593-8