Efficient chain-encryption-based quantum signature scheme with semi-trusted arbitrator | Quantum Information Processing Skip to main content
Log in

Efficient chain-encryption-based quantum signature scheme with semi-trusted arbitrator

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a quantum signature scheme with semi-trusted arbitrator is proposed. In our scheme, the signatory encodes the classical message into non-orthogonal quantum sequence. Then, he generates the secret parameters with the key-controlled hash functions. The secret parameters are used to control the Pauli operation and Hadamard operation to encrypt the quantum message. After that the quantum message is entangled as the chained quantum sequence, which is used as the quantum signature. The quantum signature is verified by the chained decryption. The arbitrator and signature receiver need not perform the quantum swap test. The partners need not prepare the redundant decoy particles for the use of checking the quantum channel, because the disturbances can break the entangled chain such that the disturbed signature cannot pass the signature verification. Our scheme is secure against the forgery attack. Even the arbitrator cannot effectively forge a quantum signature. Therefore, the arbitrator can be semi-trusted. Our scheme has more advantages in security and efficiency than the similar arbitrated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

My manuscript has no associated data.

References

  1. Diffie, W., Hellman, M.: New direction in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    MathSciNet  MATH  Google Scholar 

  2. Rivest, R.L., Shamir, A., Adelman, L.: A method for obtain digital signatures and public-key cryptosystem. Commun. ACM 21(2), 120–126 (1978)

    MATH  Google Scholar 

  3. Rabin M. O.: Digital signature and public-key functions as intractable as factorization. MIT Laboratory for computer Science, Technical Report, MIT/LCS/TR212, Jan 1979

  4. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theor. 31(4), 469–472 (1985)

    MathSciNet  MATH  Google Scholar 

  5. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)

    MathSciNet  MATH  Google Scholar 

  6. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    MathSciNet  MATH  Google Scholar 

  7. Huang, Y., Su, Z., Zhang, F., et al.: Quantum algorithm for solving hyper elliptic curve discrete logarithm problem. Quantum Inf. Process. 19, 62 (2020)

    ADS  Google Scholar 

  8. Gottesman, D., Chuang, I.: Quantum digital signatures. arXiv: https://arxiv.org/abs/quant-ph/0105032 (2001)

  9. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    ADS  Google Scholar 

  10. Yang, Y.G., Zhou, Z., Teng, Y.W., et al.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D 61, 773–778 (2011)

    ADS  Google Scholar 

  11. Zou, X.F., Qiu, D.W., Mateus, P.: Security analyses and improvement of arbitrated quantum signature with an untrusted arbitrator. Int. J. Theor. Phys. 52(9), 3295–3305 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Luo, M.X., Chen, X.B., Deng, Y., et al.: Quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 51, 2135–2142 (2012)

    MATH  Google Scholar 

  13. Kang, M.S., Hong, C.H., Heo, J., et al.: Comment on “quantum signature scheme with weak arbitrator.” Int. J. Theor. Phys. 53, 1862–1866 (2014)

    MATH  Google Scholar 

  14. Zhang, M.L., Liu, Y.H., Nie, M., et al.: Arbitrated quantum signature of quantum messages with a semi-honest arbitrator. Int. J. Theor. Phys. 57, 1310–1318 (2018)

    MathSciNet  MATH  Google Scholar 

  15. Li, Q., Chan, W.H., Long, D.Y.: Arbitrated quantum signature scheme using Bell states. Phys. Rev. A 79(5), 054307 (2009)

    ADS  MathSciNet  Google Scholar 

  16. Zou, X., Qiu, D.: Security analysis and improvements of arbitrated quantum signature schemes. Phys. Rev. A 82(4), 42325 (2010)

    ADS  Google Scholar 

  17. Zhang, K.J., Zhang, W.W., Li, D.: Improving the security of arbitrated quantum signature against the forgery attack. Quantum Inf. Process. 12(8), 2655–2669 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Wang, C., Liu, J.W., Shang, T.: Enhanced arbitrated quantum signature scheme using Bell states. Chin. Phys. B 23(6), 060309 (2014)

    ADS  Google Scholar 

  19. Wang, Y., Xu, K., Guo, Y.: A chaos-based arbitrated quantum signature scheme in quantum cryptosystem. Int. J. Theor. Phys. 53(1), 28–38 (2014)

    MATH  Google Scholar 

  20. Zhang, Y., Zeng, J.: An improved arbitrated quantum scheme with Bell states. Int. J. Theor. Phys. 57, 994–1003 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58(3), 1036–1045 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Jiang, D.H., Hu, Q.Z., Liang, X.Q., et al.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18(9), 268 (2019)

    ADS  MathSciNet  Google Scholar 

  23. Li, F.G., Shi, J.H.: An arbitrated quantum signature protocol based on the chained CNOT operations encryption. Quantum Inf. Process. 14(6), 2171–2181 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Gao, F., Qin, S.J., Guo, F.Z., et al.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84(2), 022344 (2011)

    ADS  Google Scholar 

  25. Liu, F., Zhang, K., Cao, T.: Security weaknesses in arbitrated quantum signature protocols. Int. J. Theor. Phys. 53(1), 277–288 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Li, Q., Chan, W.H., Wu, C., et al.: On the existence of quantum signature for quantum messages. Int. J. Theor. Phys. 52(12), 4335–4341 (2013)

    MathSciNet  MATH  Google Scholar 

  27. Zhang, K.J., Qin, S.J., Sun, Y., et al.: Reexamination of arbitrated quantum signature: the impossible and the possible. Quantum Inf. Process. 12(9), 3127–3141 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Li, Q., Li, C., Wen, Z., Zhao, W., et al.: On the security of arbitrated quantum signature schemes. J. Phys. A: Math. Theor. 46(1), 015307 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Hwang, T., Luo, Y.P., Chong, S.K.: Comment on: “Security analysis and improvements of arbitrated quantum signature schemes.” Phys. Rev. A 85, 056301 (2012)

    ADS  Google Scholar 

  30. Zhang, L., Sun, H.W., Zhang, K.J., et al.: The security problems in some novel arbitrated quantum signature protocols. Int. J. Theor. Phys. 56, 2433–2444 (2017)

    ADS  MATH  Google Scholar 

  31. Xin, X.J., He, Q.Q., Wang, Z., et al.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik 189, 23–31 (2019)

    ADS  Google Scholar 

  32. He, Q., Xin, X., Yang, Q.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20, 26 (2021)

    ADS  MathSciNet  Google Scholar 

  33. Zhang, L., Sun, H.W., Zhang, K.J., et al.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 70 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Zheng, X.Y., Kuang, C.: Arbitration quantum signature protocol based on XOR encryption. Int. J. Quantum Inf. 18(5), 2050025 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Ding, L., Xin, X., Li, C., et al.: Security analysis and improvements of XOR arbitrated quantum signature-based GHZ state. Mod. Phys. Lett. A (2022). https://doi.org/10.1142/S0217732322500080

    Article  MathSciNet  Google Scholar 

  36. Wang, M.Q., Wang, X., Zhan, T.: An efficient quantum digital signature for classical messages. Quantum Inf. Process. 17(10), 275 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Rains E., et al.: Handbook of Coding Theory, 177C294 pp. math.CO/0208001 (1998)

  38. Wang, M.Q., Wang, X., Zhan, T.: Unconditionally secure multi-party quantum commitment scheme. Quantum Inf. Process. 17(2), 31 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Wen, X., Chen, Y., Fang, J.: An inter-bank e-payment protocol based on quantum proxy blind signature. Quantum Inf. Process. 12, 549–558 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Cai, X.Q., Wang, X.X., Wang, T.Y.: Fair and optimistic contract signing based on quantum cryptography. Int. J. Theor. Phys. 58, 3677–3683 (2019)

    MathSciNet  MATH  Google Scholar 

  41. Zheng, M., Xue, K., Li, S., et al.: A practical quantum designated verifier signature scheme for E-voting applications. Quantum Inf. Process. 20, 230 (2021)

    ADS  MathSciNet  Google Scholar 

  42. Gao, W., Yang, L.: Quantum election protocol based on quantum public key cryptosystem. Secur. Commun. Networks 2021, 5551249 (2021)

    Google Scholar 

  43. Buhrman, H., Cleve, R., Watrous, J., et al.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    ADS  Google Scholar 

  44. Bennett C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179. IEEE, New York (1984)

  45. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121–3124 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Lo, H.K., Chau, H.F.: Unconditional security of quantum key distribution over arbitrarily long distances. Science 283(5410), 2050 (1999)

    ADS  Google Scholar 

  48. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    ADS  Google Scholar 

  49. Hwang, T., Lee, K.C.: EPR quantum key distribution protocols with 100% qubit efficiency. IET Inf. Secur. 1(1), 43–45 (2007)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Scientific Research Project of Colleges and Universities in Henan Province (CN) (No.22A413010 and No. 21A520050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Xin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, X., Ding, L., Yang, Q. et al. Efficient chain-encryption-based quantum signature scheme with semi-trusted arbitrator. Quantum Inf Process 21, 246 (2022). https://doi.org/10.1007/s11128-022-03593-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03593-8

Keywords