Abstract
We consider the following scenario: a bipartite quantum state is prepared in one of the four Bell-type states. Each qubit is possessed by the spatially separated party, and the parties wish to distinguish between the four Bell-type states. To date, it is not possible to distinguish between the four orthonormal Bell-type states without entanglement-assisted discrimination by means of local operations and classical communication (LOCC). In this paper, we demonstrate the distinguishability of orthonormal Bell-type states with certainty by using LOCC, but no particle is exchanged between the two parties. We start with the local distinguishability of the orthogonal Bell-type states and generalize it for non-orthogonal Bell-type states with nonzero fidelity.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Helstrom, C.W.: Quantum detection and estimation theory. J. Stat. Phys. 1(2), 231–252 (1969)
Helstrom, C.W.: Quantum Detection and Estimation Theory, vol. 123. Academic press, London (1976)
Helstrom, C.W.: The minimum variance of estimates in quantum signal detection. IEEE Trans. Inf. Theory 14(2), 234–242 (1968)
Ivanovic, I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123(6), 257–259 (1987)
Peres, A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128(1–2), 19 (1988)
Jaeger, G., Shimony, A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197(2), 83–87 (1995)
Chefles, A.: Unambiguous discrimination between linearly independent quantum states. Phys. Lett. A 239(6), 339–347 (1998)
Zhang, Z.C., Song, Y.Q., Song, T.T., Gao, F., Qin, S.J., Wen, Q.Y.: Local distinguishability of orthogonal quantum states with multiple copies of \(2\bigotimes 2\) maximally entangled states. Phys. Rev. A 97, 022334 (2018)
Halder, S.: Several nonlocal sets of multipartite pure orthogonal product states. Phys. Rev. A 98, 022303 (2018)
Shi, F., Zhang, X., Chen, L.: Unextendible product bases from tile structures and their local entanglement-assisted distinguishability. Phys. Rev. A 101, 062329 (2020)
Walgate, J., Short, A.J., Hardy, L., Vedral, V.: Local distinguishability of multipartite orthogonal quantum states. Phys. Rev. Lett. 85(23), 4972–4975 (2000)
Virmani, S., Sacchi, M.F., Plenio, M.B., Markham, D.: Optimal local discrimination of two multipartite pure states. Phys. Lett. A 288(2), 62–68 (2001)
Hayashi, M., Markham, D., Murao, M., Owari, M., Virmani, S.: Bounds on multipartite entangled orthogonal state discrimination using local operations and classical communication. Phys. Rev. Lett. 96, 040501 (2006)
Bandyopadhyay, S.: Entanglement and perfect discrimination of a class of multiqubit states by local operations and classical communication. Phys. Rev. A 81, 022327 (2010)
Bandyopadhyay, S.: Entanglement, mixedness, and perfect local discrimination of orthogonal quantum states. Phys. Rev. A 85, 042319 (2012)
Halder, S., Sengupta, R.: Distinguishability classes, resource sharing, and bound entanglement distribution. Phys. Rev. A 101, 012311 (2020)
Zhang, Z.C., Wu, X., Zhang, X.: Locally distinguishing unextendible product bases by using entanglement efficiently. Phys. Rev. A 101, 022306 (2020)
Ghosh, S., Kar, G., Roy, A., Sarkar, D., Sen, A., Sen, U.: Local indistinguishability of orthogonal pure states by using a bound on distillable entanglement. Phys. Rev. A 65, 062307 (2002)
Bandyopadhyay, S., Brassard, G., Kimmel, S., Wootters, W.K.: Entanglement cost of nonlocal measurements. Phys. Rev. A 80, 012313 (2009)
Bandyopadhyay, S., Halder, S., Nathanson, M.: Entanglement as a resource for local state discrimination in multipartite systems. Phys. Rev. A 94, 022311 (2016)
Güngör, Ö., Turgut, S.: Entanglement-assisted state discrimination and entanglement preservation. Phys. Rev. A 94, 032330 (2016)
Vaidman, L., Yoran, N.: Methods for reliable teleportation. Phys. Rev. A 59(1), 116–125 (1999)
Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1996)
Zaman, F., Jeong, Y., Shin, H.: Dual quantum Zeno superdense coding. Sci. Rep. 9(1), 1–9 (2019)
Cohen, S.M.: Local distinguishability with preservation of entanglement. Phys. Rev. A 75, 052313 (2007)
Cohen, S.M.: Understanding entanglement as resource: locally distinguishing unextendible product bases. Phys. Rev. A 77, 012304 (2008)
Salih, H., Li, Z.H., Al-Amri, M., Zubairy, M.S.: Protocol for direct counterfactual quantum communication. Phys. Rev. Lett. 110(17), 170502 (2013)
Aharonov, Y., Vaidman, L.: Modification of counterfactual communication protocols that eliminates weak particle traces. Phys. Rev. A 99(1), 010103 (2019)
Dicke, R.H.: Interaction-free quantum measurements: a paradox. Am. J. Phys. 49(10), 925–930 (1981)
Elitzur, A., Vaidman, L.: Quantum mechanical interaction-free measurement. Found. Phys. 23(76), 987–997 (1993)
Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.: Quantum Zeno effect. Phys. Rev. A 41(5), 2295 (1990)
Petrosky, T., Tasaki, S., Prigogine, I.: Quantum Zeno effect. Phys. Lett. A 151(3–4), 109–113 (1990)
Noh, T.G.: Counterfactual quantum cryptography. Phys. Rev. Lett. 103(23), 230501 (2009)
Yin, Z.Q., Li, H.W., Chen, W., Han, Z.F., Guo, G.C.: Security of counterfactual quantum cryptography. Phys. Rev. A 82(4), 042335 (2010)
Yin, Z.Q., Li, H.W., Yao, Y., Zhang, C.M., Wang, S., Chen, W., Guo, G.C., Han, Z.F.: Counterfactual quantum cryptography based on weak coherent states. Phys. Rev. A 86(2), 022313 (2012)
Salih, H.: Tripartite counterfactual quantum cryptography. Phys. Rev. A 90(1), 012333 (2014)
Mitchison, G., Jozsa, R.: Counterfactual Computation, vol. 457, pp. 1175–1193. The Royal Society, New York (2001)
Hosten, O., Rakher, M.T., Barreiro, J.T., Peters, N.A., Kwiat, P.G.: Counterfactual quantum computation through quantum interrogation. Nature 439(7079), 949 (2006)
Kong, F., Ju, C., Huang, P., Wang, P., Kong, X., Shi, F., Jiang, L., Du, J.: Experimental realization of high-efficiency counterfactual computation. Phys. Rev. Lett. 115(8), 080501 (2015)
Jozsa, R.: Quantum effects in algorithums. Chaos Solitons Fract 10, 1657 (1999)
Mitchison, G., Jozsa, R., Popescu, S.: Sequential weak measurement. Phys. Rev. A 76, 062105 (2007)
Zaman, F., Lee, K., Shin, H.: Information carrier and resource optimization of counterfactual quantum communication. Quantum Inf. Process (2021) submitted for publication. arXiv:2102.09181
Chen, Y., Jian, D., Gu, X., Xie, L., Chen, L.: Counterfactual entanglement distribution using quantum dot spins. JOSA B 33(4), 663–669 (2016)
Salih, H.: Protocol for counterfactually transporting an unknown qubit. Front. Phys. 3, 94 (2016)
Cao, Y., Li, Y.H., Cao, Z., Yin, J., Chen, Y.A., Yin, H.L., Chen, T.Y., Ma, X., Peng, C.Z., Pan, J.W.: Direct counterfactual communication via quantum Zeno effect. Proc. Natl. Acad. Sci. USA 114(19), 4920–4924 (2017)
Guo, Q., Cheng, L.Y., Chen, L., Wang, H.F., Zhang, S.: Counterfactual quantum-information transfer without transmitting any physical particles. Sci. Rep. 5, 8416 (2015)
Li, Z.H., Al-Amri, M., Zubairy, M.S.: Direct counterfactual transmission of a quantum state. Phys. Rev. A 92(5), 052315 (2015)
Liu, C., Liu, J., Zhang, J., Zhu, S.: The experimental demonstration of high efficiency interaction-free measurement for quantum counterfactual-like communication. Sci. Rep. 7(1), 10875 (2017)
Guo, Q., Zhai, S., Cheng, L.Y., Wang, H.F., Zhang, S.: Counterfactual quantum cloning without transmitting any physical particles. Phys. Rev. A 96, 052335 (2017)
Zaman, F., Jeong, Y., Shin, H.: Counterfactual Bell-state analysis. Sci. Rep. 8(1), 14641 (2018)
Zaman, F., Shin, H., Win, M.Z.: Counterfactual concealed telecomputation. Phys. Rev. Lett. (2020) submitted for publication. arXiv:2012.04948
Zaman, F., Shin, H., Win, M.Z.: Quantum duplex coding. arXiv:1910.03200 (2019)
Acknowledgements
This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIT) (No. 2019R1A2C2007037).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zaman, F., Hong, EK. & Shin, H. Local distinguishability of Bell-type states. Quantum Inf Process 20, 174 (2021). https://doi.org/10.1007/s11128-021-03114-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03114-z