Abstract
We propose a quantum classifier, which can classify data under the supervised learning scheme using a quantum feature space. The input feature vectors are encoded in a single quNit (a N-level quantum system), as opposed to more commonly used entangled multi-qubit systems. For training, we use the much used quantum variational algorithm—a hybrid quantum–classical algorithm, in which the forward part of the computation is performed on a quantum hardware, whereas the feedback part is carried out on a classical computer. We introduce “single-shot training”, where all input samples belonging to the same class are used to train the classifier simultaneously. This significantly speeds up the training procedure and provides an advantage over classical machine learning classifiers. We demonstrate successful classification of popular benchmark datasets with our quantum classifier and compare its performance with respect to classical machine learning classifiers. We also show that the number of training parameters in our classifier is significantly less than the classical classifiers.





Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)
Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings IEEE International Conference on Computers, Systems and Signal Processing (ICCSSP) 175 (1984)
Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., et al.: Ground-to-satellite quantum teleportation. Nature 549, 70 (2017)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press (2010). https://doi.org/10.1017/CBO9780511976667
Grover, L.K.: A fast quantum mechanical algorithm for database search. Preprint arXiv:quant-ph/9605043) (1996)
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991). https://doi.org/10.1103/PhysRevLett.67.661
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195 (2017)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521, 436–444 (2015)
Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
Havlíček, V., Córcoles, A.D., Temme, K., Harrow, A.W., Kandala, A., Chow, J.M., Gambetta, J.M.: Supervised learning with quantum-enhanced feature spaces. Nature 567, 209 (2019)
Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122(4), 040504 (2019). https://doi.org/10.1103/PhysRevLett.122.040504
Wan, K.H., Dahlsten, O., Kristjánsson, H., Gardner, R., Kim, M.: Quantum generalisation of feedforward neural networks. npj Quantum Inf. 3, 36 (2017)
Farhi, E., Neven, H.: Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018)
Rebentrost, P., Bromley, T.R., Weedbrook, C., Lloyd, S.: Quantum Hopfield neural network. Phys. Rev. A 98(4), 042308 (2018)
McClean, J.R., Romero, J., Babbush, R., Aspuru-Guzik, A.: The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 023023 (2016). https://doi.org/10.1088/1367-2630/18/2/023023
Mitarai, K., Negoro, M., Kitagawa, M., Fujii, K.: Quantum circuit learning. Phys. Rev. A 98(3), 032309 (2018)
Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education Limited, Kuala Lumpur (2016)
Schuld, M., Bocharov, A., Svore, K., Wiebe, N.: Circuit-centric quantum classifiers. arXiv preprint arXiv:1804.00633 (2018)
Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79. ISSN 2521-327X
Malik, M., Mirhosseini, M., Lavery, M.P., Leach, J., Padgett, M.J., Boyd, R.W.: Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nat. Commun. 5, 3115 (2014)
Department of Information and Computer Science, University of California Irvine: UCI repository of machine learning databases. https://archive.ics.uci.edu/ml/datasets/Iris (1998). Accessed 12 June 2019
Department of Information and Computer Science, University of California Irvine: UCI repository of machine learning databases. https://archive.ics.uci.edu/ml/datasets/connectionist+bench+(sonar,+mines+vs.+rocks) (1998). Accessed 12 June 2019
Department of Information and Computer Science, University of California Irvine: UCI repository of machine learning databases. http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagnostic%29 (1998). Accessed 12 June 2019
Tilma, T., Sudarshan, E.C.G.: Generalized Euler angle parametrization for SU(N). J. Phys. A: Math. General 35, 10467–10501 (2002). https://doi.org/10.1088/0305-4470/35/48/316
Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989). ISSN 0893-6080
Acknowledgements
SA thanks CSIR (Grant No. - 09/086(1203)/2014-EMR-I), and DB thanks the Department of Science and Technology INSPIRE Faculty Award and Science and Engineering Research Board Early Career Research (ECR) award for funding the research.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Adhikary, S., Dangwal, S. & Bhowmik, D. Supervised learning with a quantum classifier using multi-level systems. Quantum Inf Process 19, 89 (2020). https://doi.org/10.1007/s11128-020-2587-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-2587-9