Universal computation with quantum fields | Quantum Information Processing Skip to main content

Advertisement

Log in

Universal computation with quantum fields

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We explore a way of universal quantum computation with particles which cannot occupy the same position simultaneously and are symmetric under exchange of particle labels. Therefore the associated creation and annihilation operators are neither bosonic nor fermionic. In this work we first show universality of our method and numerically address several examples. We demonstrate dynamics of a Bloch electron system from a viewpoint of adiabatic quantum computation. In addition we provide a novel Majorana fermion system and analyze phase transitions with spin-coherent states and the time average of the out-of-time-order correlator (OTOC). We report that a first-order phase transition is avoided when it evolves in a non-stoquastic manner and the time average of the OTOC diagnoses the phase transitions successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. \([a_i,a^\dagger _j]=\delta _{ij}, [a_i,a_j]=[a^\dagger _i,a^\dagger _j]=0\) for bosons.

  2. \(\{a_i,a^\dagger _j\}=\delta _{ij}, \{a_i,a_j\}=\{a^\dagger _i,a^\dagger _j\}=0\) for fermions.

References

  1. Turing, A.M.: Computing machinery and intelligence. In: Epstein, R., Roberts, G., Beber, G. (eds.) Parsing the Turing Test, pp. 23–65. Springer (2009)

  2. Feynman, R.P.: Quantum mechanical computers. Found. Phys. 16, 507 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  3. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A Math. Phys. Sci. 400, 97 (1985). https://doi.org/10.1098/rspa.1985.0070

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Church, A.: An unsolvable problem of elementary number theory. Am. J. Math. 58, 345 (1936)

    Article  MathSciNet  Google Scholar 

  5. Turing, A.M.: On computable numbers, with an application to the entscheidungsproblem. Proc. Lond. Math. Soc. s2–42, 230 (1937)

    Article  MathSciNet  Google Scholar 

  6. Abrams, D.S., Lloyd, S.: Simulation of many-body fermi systems on a universal quantum computer. Phys. Rev. Lett. 79, 2586 (1997)

    Article  ADS  Google Scholar 

  7. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse hamiltonians. Commun. Math. Phys. 270, 359 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zalka, C.: Simulating quantum systems on a quantum computer. Proc. R. Soc. Lond. Ser. A 454, 313 (1998). arXiv:quant-ph/9603026

    Article  ADS  Google Scholar 

  9. Jordan, S.P., Lee, K.S.M., Preskill, J.: Quantum algorithms for quantum field theories. Science 336, 1130 (2012). arXiv:1111.3633

    Article  ADS  Google Scholar 

  10. Jordan, S.P., Krovi, H., Lee, K.S.M., Preskill, J.: BQP-completeness of scattering in scalar quantum field theory. Quantum 2, 44 (2018)

    Article  Google Scholar 

  11. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum Computation by Adiabatic Evolution, arXiv e-prints (2000) quant [arXiv:quant-ph/0001106]

  12. Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355 (1998)

    Article  ADS  Google Scholar 

  14. Johnson, M.W., Amin, M.H.S., Gildert, S., Lanting, T., Hamze, F., Dickson, N., et al.: Quantum annealing with manufactured spins. Nature 473, 194 EP (2011)

    Article  ADS  Google Scholar 

  15. Rønnow, T.F., Wang, Z., Job, J., Boixo, S., Isakov, S.V., Wecker, D., et al.: Defining and detecting quantum speedup. Science 345, 420 (2014)

    Article  ADS  Google Scholar 

  16. Lucas, A.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  17. Ikeda, K., Nakamura, Y., Humble, T.S.: Application of quantum annealing to nurse scheduling problem. Sci. Rep. 9, 12837 (2019)

    Article  ADS  Google Scholar 

  18. Feynman, R.P.: Quantum mechanical computers. Opt. News 11, 11 (1985)

    Article  Google Scholar 

  19. Biamonte, J.D., Love, P.J.: Realizable hamiltonians for universal adiabatic quantum computers. Phys. Rev. A 78, 012352 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  20. Jozsa, R., Miyake, A.: Matchgates and classical simulation of quantum circuits. Proc. R. Soc. Lond. Ser. A 464, 3089 (2008). arXiv:0804.4050

    ADS  MathSciNet  MATH  Google Scholar 

  21. Jordan, P., Wigner, E.: Über das paulische äquivalenzverbot. Zeitschrift für Physik 47, 631 (1928)

    Article  ADS  Google Scholar 

  22. Ikeda, K.: Hofstadter’s butterfly and langlands duality. J. Math. Phys. 59, 061704 (2018). https://doi.org/10.1063/1.4998635

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Ikeda, K.: Quantum hall effect and langlands program. Ann. Phys. 397, 136 (2018). arXiv:1708.00419

    Article  ADS  MathSciNet  Google Scholar 

  24. Ikeda, K.: Topological Aspects of Matters and Langlands Program. arXiv:1812.11879

  25. Hofstadter, D.R.: Energy levels and wave functions of bloch electrons in rational and irrational magnetic fields. Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  26. Hatsuda, Y., Katsura, H., Tachikawa, Y.: Hofstadter’s butterfly in quantum geometry. New J. Phys. 18, 103023 (2016). arXiv:1606.01894

    Article  ADS  MathSciNet  Google Scholar 

  27. Seki, Y., Nishimori, H.: Quantum annealing with antiferromagnetic fluctuations. Phys. Rev. E 85, 051112 (2012). arXiv:1203.2418

    Article  ADS  Google Scholar 

  28. Bravyi, S., DiVincenzo, D.P., Oliveira, R.I., Terhal, B.M.: The Complexity of Stoquastic Local Hamiltonian Problems, arXiv e-prints (2006) quant [arXiv:quant-ph/0606140]

  29. Damski, B., Rams, M.M.: Exact results for fidelity susceptibility of the quantum ising model: the interplay between parity, system size, and magnetic field. J. Phys. A Math. Theor. 47, 025303 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  30. Dusuel, S., Vidal, J.: Continuous unitary transformations and finite-size scaling exponents in the lipkin-meshkov-glick model. Phys. Rev. B 71, 224420 (2005)

    Article  ADS  Google Scholar 

  31. Susa, Y., Jadebeck, J.F., Nishimori, H.: Relation between quantum fluctuations and the performance enhancement of quantum annealing in a nonstoquastic hamiltonian. Phys. Rev. A 95, 042321 (2017)

    Article  ADS  Google Scholar 

  32. Larkin, A., Ovchinnikov, Y.N.: Quasiclassical method in the theory of superconductivity. Sov Phys JETP 28, 1200 (1969)

    ADS  Google Scholar 

  33. Maldacena, J., Shenker, S.H., Stanford, D.: A bound on chaos. JHEP 08, 106 (2016). arXiv:1503.01409

    Article  ADS  MathSciNet  Google Scholar 

  34. Kitaev, A.: Hidden correlations in the hawking radiation and thermal noise, talk at KITP, University of California, Santa Barbara, CA, U.S.A. http://online.kitp.ucsb.edu/online/joint98/kitaev/

  35. Matsuki, Y., Ikeda, K.: Comments on the fractal energy spectrum of honeycomb lattice with defects. J. Phys. Commun. 3, 055003 (2019)

    Article  Google Scholar 

  36. Sun, Z.-H., Cai, J.-Q., Tang, Q.-C., Hu, Y., Fan, H.: Out-of-time-order correlators and quantum phase transitions in the Rabi and Dicke model, arXiv e-prints (2018) [arXiv:1811.11191]

  37. Bohigas, O., Giannoni, M.J., Schmit, C.: Characterization of chaotic quantum spectra and universality of level fluctuation laws. Phys. Rev. Lett. 52, 1 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  38. Berry, M.V., Tabor, M., Ziman, J.M.: Level clustering in the regular spectrum. Proc. R. Soc. Lond. A Math. Phys. Sci. 356, 375 (1977). https://doi.org/10.1098/rspa.1977.0140

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Katsuya Hashino, Viktor Jahnke and Kin-ya Oda for stimulating discussion and useful comments on the draft. The author was partly supported by Grant-in-Aid for JSPS Research Fellow, No. 19J11073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Ikeda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, K. Universal computation with quantum fields. Quantum Inf Process 19, 331 (2020). https://doi.org/10.1007/s11128-020-02811-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02811-5

Keywords

Navigation