Abstract
Transmitting quantum states securely and efficiently is an important task in quantum communication. In this article, we investigate the protocols for joint remote preparation of arbitrary three-qubit states with three-photon hyperentangled states simultaneously entangled in three degrees of freedom. First, we propose a protocol for deterministic joint remote preparation of a three-qubit state via a hyperentangled state simultaneously entangled in three degrees of freedom based on quantum state initialization. Second, we present a scheme for recursive joint remote preparation of the state via partially hyperentangled state, resorting to linear-optical elements only. The protocol has the advantage of having high channel capacity for joint remote preparing an arbitrary three-qubit state via hyperentangled state. Moreover, it is more convenient in application since it only requires linear-optical elements for joint remote preparation of arbitrary three-qubit state.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)
Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for superdense coding between multiparties. Phys. Rev. A 65, 022304 (2002)
Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys. 4, 282–286 (2008)
Williams, B.P., Sadlier, R.J., Humble, T.S.: Superdense coding over optical fiber links with complete Bell-state measurements. Phys. Rev. Lett. 118, 050501 (2017)
Li, X.H., Ghose, S.: Hyperentangled Bell-state analysis and hyperdense coding assisted by auxiliary entanglement. Phys. Rev. A 96, 020303 (2017)
Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett 70, 1895–1899 (1993)
Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)
Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., Yang, K.X., Han, X., Yao, Y.Q., Li, J., Wu, H.Y., Wan, S., Liu, L., Liu, D.Q., Kuang, Y.W., He, Z.P., Shang, P., Guo, C., Zheng, R.H., Tian, K., Zhu, Z.C., Liu, N.L., Lu, C.Y., Shu, R., Chen, Y.A., Peng, C.Z., Wang, J.Y., Pan, J.W.: Ground-to-satellite quantum teleportation. Nature 549, 7670 (2017)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)
Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)
Hu, J.Y., Yu, B., Jing, M.Y., Xiao, L.T., Jia, S.T., Qin, G.Q., Long, G.L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)
Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)
Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2000)
Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)
Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)
Jeannic, H.L., Cavailles, A., Raskop, J., Huang, K., Laurat, J.: Remote preparation of continuous-variable qubits using loss-tolerant hybrid entanglement of light. Optica 5, 1012–1015 (2018)
An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B 41, 095501 (2008)
Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12, 3223 (2013)
An, N.B., Bich, C.T.: Perfect controlled joint remote state preparation independent of entanglement degree of the quantum channel. Phys. Lett. A 378, 3582–3585 (2014)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, p. 124 (1994)
Long, G.L., Xiao, L.: Parallel quantum computing using a single ensemble quantum computer. Phys. Rev. A 69, 052303 (2004)
Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)
Ren, B.C., Deng, F.G.: Hyper-parallel photonic quantum computation with coupled quantum dots. Sci. Rep. 4, 4623 (2014)
Ren, B.C., Wang, G.Y., Deng, F.G.: Universal hyperparallel hybrid photonic quantum gates with dipole-induced transparency in the weak-coupling regime. Phys. Rev. A 91, 032328 (2015)
Li, T., Long, G.L.: Hyperparallel optical quantum computation assisted by atomic ensembles embedded in double-sided optical cavities. Phys. Rev. A 94, 022343 (2016)
Li, T., Deng, F.G.: Error-rejecting quantum computing with solid-state spins assisted by low-optical microcavities. Phys. Rev. A 94, 062310 (2016)
Song, X.K., Ai, Q., Qiu, J., Deng, F.G.: Physically feasible three-level transitionless quantum driving with multiple Schrodinger dynamics. Phys. Rev. A 93, 052324 (2016)
Song, X.K., Zhang, H., Ai, Q., Qiu, J., Deng, F.G.: Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys. 18, 023001 (2016)
Ren, B.C., Deng, F.G.: Robust hyperparallel photonic quantum entangling gate with cavity QED. Opt. Express 25, 10863–10873 (2017)
Reimer, C., Sciara, S., Roztocki, P., Islam, M., Cortés, L.R., Zhang, Y.B., Fischer, B., Loranger, S., Kashyap, R., Cino, A., Chu, S.T., Little, B.E., Moss, D.J., Caspani, L., Munro, W.J., Azaña, J., Kues, M., Morandotti, R.: High-dimensional one-way quantum processing implemented on d-level cluster states. Nat. Phys. 15, 148–153 (2019)
Zhou, Q., Valivarthi, R., John, C., Tittel, W.: Practical quantum random-number generation based on sampling vacuum fluctuations. Quantum Eng. 1, e8 (2019)
Sillanp\(\ddot{a}\ddot{a}\), M.A., Park, J.I., Simmonds, R.W.: Coherent quantum state storage and transfer between two phase qubits via a resonant cavity. Nature 449, 438 (2007)
Tao, M.J., Hua, M., Ai, Q., Deng, F.G.: Quantum-information processing on nitrogen-vacancy ensembles with the local resonance assisted by circuit QED. Phys. Rev. A 91, 092325 (2015)
Bennett, C.H., Brassard, G., Popescu, S., Schumacher, B., Smolin, J.A., Wootters, W.K.: Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)
Sheng, Y.B., Deng, F.G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)
Sheng, Y.B., Deng, F.G.: One-step deterministic polarization-entanglement purification using spatial entanglement. Phys. Rev. A 82, 044305 (2010)
Wang, C., Sheng, W.W., Wang, T.J.: One-step deterministic polarization-entanglement purification using spatial entanglement. Sci. Bull. 60, 2016 (2015)
Zhou, L., Sheng, Y.B.: Purification of logic-qubit entanglement. Sci. Rep. 6, 28813 (2016)
Li, T., Yang, G.J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A 93, 012302 (2016)
Leung, D.W., Shor, P.W.: Obvously remote state preparation. Phys. Rev. Lett. 90, 127905 (2003)
Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)
Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 177901 (2001)
Zeng, B., Zhang, P.: Remote-state preparation in higher dimension and the parallelizable manifold \(S^{n-1}\). Phys. Rev. A 65, 022316 (2002)
Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 027901 (2003)
Liu, J.M., Feng, X.L., Oh, C.H.: Remote state preparation of arbitrary two- and three-qubit states. Europhys. Lett. 87, 30006 (2009)
Peng, X.H., Zhu, X.W., Fang, X.M., Fang, M., Liu, M.L., Gao, K.L.: Experimental implementation of remote state preparation by nuclear magnetic resonance. Phys. Lett. A 306, 271 (2003)
Rosenfeld, W., Berner, S., Volz, J., Weber, M., Weinfurter, H.: Remote preparation of an atomic quantum memory. Phys. Rev. Lett. 98, 050504 (2007)
Wu, W., Liu, W.T., Chen, P.X., Li, C.Z.: Deterministic remote preparation of pure and mixed polarization states. Phys. Rev. A 81, 042301 (2010)
Killoran, N., Biggerstaff, D.N., Kaltenbaek, R., Resch, K.J., Lütkenhaus, N.: Derivation and experimental test of fidelity benchmarks for remote preparation of arbitrary qubit states. Phys. Rev. A 81, 012334 (2010)
Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B 40, 3719–3724 (2007)
An, N.B.: Joint remote state preparation of a general two-qubit state. J. Phys. B 42, 125501 (2009)
Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two-and three-qubit states. J. Phys. B 44, 075501 (2011)
Adepoju, A.G., Falaye, B.J., Sun, G.H., Camacho-Nieto, O., Dong, S.H.: Joint remote state preparation (JRSP) of two-qubit equatorial state in quantum noisy channels. Phys. Lett. A 381, 581 (2017)
Bich, C.T., Van Hop, N., An, N.B.: Deterministic joint remote preparation of an equatorial hybrid state via high-dimensional Einstein–Podolsky–Rosen pairs: active versus passive receiver. Quantum Inf. Process. 17, 75 (2018)
Choudhury, B.S., Samanta, S.: Perfect joint remote state preparation of arbitrary six-qubit cluster-type states. Quantum Inf. Process. 17, 175 (2018)
Kwiat, P.G.: Hyper-entangled states. J. Mod. Opt. 44, 2173–2184 (1997)
Sheng, Y.B., Deng, F.G., Long, G.L.: Complete hyperentangled-Bell-state analysis for quantum communication. Phys. Rev. A 82, 032318 (2010)
Barreiro, J.T., Wei, T.C., Kwiat, P.G.: Remote preparation of single-photon hybrid entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)
Graham, T.M., Bernstein, H.J., Wei, T.C., Junge, M., Kwiat, P.G.: Superdense teleportation using hyperentangled photons. Nat. Commun. 6, 7185 (2015)
Luo, M.X., Li, H.R., Lai, H., Wang, X.: Teleportation of a ququart system using hyperentangled photons assisted by atomic-ensemble memories. Phys. Rev. A 93, 012332 (2016)
Nawaz, M., Ikram, M.: Remote state preparation through hyperentangled atomic states. J. Phys. B 51, 075501 (2018)
Vallone, G., Ceccarelli, R., DeMartini, F., Mataloni, P.: Hyperentanglement of two photons in three degrees of freedom. Phys. Rev. A 79, 030301(R) (2009)
Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A 94, 032319 (2016)
Wang, X.L., Cai, X.D., Su, Z.E., Chen, M.C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature 518, 516 (2015)
Ren, B.C., Deng, F.G.: Hyperentanglement purification and concentration assisted by diamond NV centers inside photonic crystal cavities. Laser Phys. Lett. 10, 115201 (2013)
Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)
Zhou, P., Jiao, X.F., Lv, S.X.: Parallel remote state preparation of arbitrary single-qubit states via linear-optical elements by using hyperentangled Bell states as the quantum channel. Quantum Inf. Process. 17, 298 (2018)
Zheng, Y.Y., Liang, L.X., Zhang, M.: Self-assisted complete analysis of three-photon hyperentangled Greenberger–Horne–Zeilinger states with nitrogen-vacancy centers in microcavities. Quantum Inf. Process. 17, 172 (2018)
Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)
Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by quantum dot inside one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)
Zhou, P., Lv, L.: Hyper-parallel nonlocal CNOT operation with hyperentanglement assisted by cross-Kerr nonlinearity. Sci. Rep. 9, 15939 (2019)
Long, G.L., Sun, Y.: Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev. A 64, 014303 (2001)
Jiao, X.F., Zhou, P., Lv, S.X., Wang, Z.Y.: Remote preparation for single-photon two-qubit hybrid state with hyperentanglement via linear-optical elements. Sci. Rep. 9, 4663 (2019)
Li, C.Y., Shen, Y.: Asymmetrical hyperentanglement concentration for entanglement of polarization and orbital angular momentum. Opt. Express 27, 13127–13181 (2019)
Acknowledgements
This work was supported by the National Natural Science Foundation of China under Grant Nos. 11564004 and 61501129, Natural Science Foundation of Guangxi under Grant Nos. 2014GXNSFAA118008, Special Funds of Guangxi Distinguished Experts Construction Engineering and Xiangsihu Young Scholars and Innovative Research Team of GXUN.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhou, P., Lv, L. Joint remote preparation of single-photon three-qubit state with hyperentangled state via linear-optical elements. Quantum Inf Process 19, 283 (2020). https://doi.org/10.1007/s11128-020-02784-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02784-5