Unified trade-off optimization of quantum Otto heat engines with squeezed thermal reservoirs | Quantum Information Processing Skip to main content

Advertisement

Log in

Unified trade-off optimization of quantum Otto heat engines with squeezed thermal reservoirs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider a quantum Otto heat engine cycle operating between two squeezed thermal reservoirs that are characterized by a temperature as well as additional parameters that quantify the degree of squeezing. The optimal efficiency at the unified trade-off optimization criterion representing a compromise between energy benefits and losses for a quantum Otto heat engine is systematically investigated. The analytical expressions for the optimal efficiency are determined in the limit adiabatic and nonadiabatic processes as well as in the high- and low-temperature regimes, respectively. The general unified trade-off efficiency is given as a nonequilibrium efficiency that extends the standard unified trade-off efficiency to a more general nonequilibrium condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig.1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Curzon, F., Ahlborn, B.: Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43(1), 22–24 (1975)

    Article  ADS  Google Scholar 

  2. Van den Broeck, C.: Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95(19), 190602 (2005)

    Article  Google Scholar 

  3. Esposito, M., Kawai, R., Lindenberg, K., Van den Broeck, C.: Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 105(15), 150603 (2010)

    Article  ADS  Google Scholar 

  4. Wang, J., He, J., Wu, Z.: Efficiency at maximum power output of quantum heat engines under finite-time operation. Phys. Rev. E 85(3), 031145 (2012)

    Article  ADS  Google Scholar 

  5. Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109(20), 203006 (2012)

    Article  ADS  Google Scholar 

  6. Calvo Hernández, A., Medina, A., Roco, J.M.M., White, J.A., Velasco, S.: Unified optimization criterion for energy converters. Phys. Rev. E 63(3), 037102 (2001)

    Article  ADS  Google Scholar 

  7. Leff, H.S.: Thermal efficiency at maximum work output: New results for old heat engines. Am. J. Phys. 55(7), 602–610 (1987)

    Article  ADS  Google Scholar 

  8. Yan, Z., Chen, J.: Modified Bucher diagrams for heat flows and works in two classes of cycles. Am. J. Phys. 58(4), 404–405 (1990)

    Article  ADS  Google Scholar 

  9. De Vos, A.: Efficiency of some heat engines at maximum-power conditions. Am. J. Phys. 53(6), 570–573 (1985)

    Article  ADS  Google Scholar 

  10. Chen, J., Yan, Z., Lin, G., Andresen, B.: On the Curzon-Ahlborn efficiency and its connection with the efficiencies of real heat engines. Energy Convers. Manage. 42(2), 173–181 (2001)

    Article  Google Scholar 

  11. Angulo-Brown, F.: An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 69(11), 7465–7469 (1991)

    Article  ADS  Google Scholar 

  12. Sánchez-Salas, N., López-Palacios, L., Velasco, S., Calvo Hernández, A.: Optimization criteria, bounds, and efficiencies of heat engines. Phys. Rev. E 82(5), 051101 (2010)

    Article  ADS  Google Scholar 

  13. de Tomas, C., White, J.M.M., Calvo Hernández, A., Wang, Y., Tu, Z.C.: Low-dissipation heat devices: ussnified trade-off optimization and bounds. Phys. Rev. E 87(1), 012105 (2013)

    Article  ADS  Google Scholar 

  14. Long, R., Liu, Z., Liu, W.: Performance optimization of minimally nonlinear irreversible heat engines and refrigerators under a trade-off figure of merit. Phys. Rev. E 89(6), 062119 (2014)

    Article  ADS  Google Scholar 

  15. Zhang, Y., Huang, C., Lin, G., Chen, J.: Universality of efficiency at unified trade-off optimization. Phys. Rev. E 93(3), 032152 (2016)

    Article  ADS  Google Scholar 

  16. Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86(5), 051105 (2012)

    Article  ADS  Google Scholar 

  17. Manzano, G., Galve, F., Zambrini, R., Parrondo, Juan M. R.: Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93(5), 052120 (2016)

  18. Agarwalla, B.K., Jiang, J.H., Segal, D.: Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs. Phys. Rev. B 96(10), 104304 (2017)

    Article  ADS  Google Scholar 

  19. Niedenzu, W., Mukherjee, V., Ghosh, A., kofman, A. G., Kurizki, G.: Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 9, 165 (2018)

  20. Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299(5608), 862–864 (2003)

    Article  ADS  Google Scholar 

  21. Scully, M.O., Chapin, K.R., Dorfman, K.E., Kim, M.B., Svidzinsky, A.: Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. USA 108(37), 15097–15100 (2011)

    Article  ADS  Google Scholar 

  22. Perarnau-Llobet, M., Hovhannisyan, K.V., Huber, M., Skrzypczyk, P., Brunner, N., Acín, A.: Extractable work from correlations. Phys. Rev. X 5(4), 041011 (2015)

    MATH  Google Scholar 

  23. Klaers, J., Faelt, S., Imamoglu, A., Togan, E.: Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the carnot limit. Phys. Rev. X 7(3), 031044 (2017)

    Google Scholar 

  24. Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122(11), 110601 (2019)

    Article  ADS  Google Scholar 

  25. Abah, O., Lutz, E.: Efficiency of heat engines coupled to nonequilibrium reservoirs. Europhys. Lett. 106(2), 20001 (2014)

    Article  ADS  Google Scholar 

  26. Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112(3), 030602 (2014)

    Article  ADS  Google Scholar 

  27. Zhang, Y.: Optimization performance of quantum Otto heat engines and refrigerators with squeezed thermal reservoirs. arXiv:1903.11931 [quant-ph] (2019)

  28. Lin, B., Chen, J.: Performance analysis of an irreversible quantum heat engine working with harmonic oscillators. Phys. Rev. E 67(4), 046105 (2003)

    Article  ADS  Google Scholar 

  29. Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76(3), 031105 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  30. Abah, O., Lutz, E.: Optimal performance of a quantum Otto refrigerator. Europhys. Lett. 113(6), 60002 (2016)

    Article  ADS  Google Scholar 

  31. Deffner, S., Lutz, E.: Nonequilibrium work distribution of a quantum harmonic oscillator. Phys. Rev. E 77(2), 021128 (2008)

    Article  ADS  Google Scholar 

  32. Deffner, S., Abah, O., Lutz, E.: Quantum work statistics of linear and nonlinear parametric oscillators. Chem. Phys. 375(2), 200–208 (2010)

    Article  Google Scholar 

  33. Husimi, K.: Miscellanea in Elementary Quantum Mechanics. II. Prog. Theor. Phys. 9(4), 381–402 (1953)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (Nos. 11675132 and 11947010), the Science and Technology Base and Talent Project of Guangxi (No. AD19110104), and the Guangxi University of Science and Technology Foundation for PhDs (No. 18Z11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanchao Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Guo, J. & Chen, J. Unified trade-off optimization of quantum Otto heat engines with squeezed thermal reservoirs. Quantum Inf Process 19, 268 (2020). https://doi.org/10.1007/s11128-020-02774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02774-7

Keywords

Navigation