Abstract
We consider a quantum Otto heat engine cycle operating between two squeezed thermal reservoirs that are characterized by a temperature as well as additional parameters that quantify the degree of squeezing. The optimal efficiency at the unified trade-off optimization criterion representing a compromise between energy benefits and losses for a quantum Otto heat engine is systematically investigated. The analytical expressions for the optimal efficiency are determined in the limit adiabatic and nonadiabatic processes as well as in the high- and low-temperature regimes, respectively. The general unified trade-off efficiency is given as a nonequilibrium efficiency that extends the standard unified trade-off efficiency to a more general nonequilibrium condition.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Curzon, F., Ahlborn, B.: Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43(1), 22–24 (1975)
Van den Broeck, C.: Thermodynamic efficiency at maximum power. Phys. Rev. Lett. 95(19), 190602 (2005)
Esposito, M., Kawai, R., Lindenberg, K., Van den Broeck, C.: Efficiency at maximum power of low-dissipation Carnot engines. Phys. Rev. Lett. 105(15), 150603 (2010)
Wang, J., He, J., Wu, Z.: Efficiency at maximum power output of quantum heat engines under finite-time operation. Phys. Rev. E 85(3), 031145 (2012)
Abah, O., Roßnagel, J., Jacob, G., Deffner, S., Schmidt-Kaler, F., Singer, K., Lutz, E.: Single-ion heat engine at maximum power. Phys. Rev. Lett. 109(20), 203006 (2012)
Calvo Hernández, A., Medina, A., Roco, J.M.M., White, J.A., Velasco, S.: Unified optimization criterion for energy converters. Phys. Rev. E 63(3), 037102 (2001)
Leff, H.S.: Thermal efficiency at maximum work output: New results for old heat engines. Am. J. Phys. 55(7), 602–610 (1987)
Yan, Z., Chen, J.: Modified Bucher diagrams for heat flows and works in two classes of cycles. Am. J. Phys. 58(4), 404–405 (1990)
De Vos, A.: Efficiency of some heat engines at maximum-power conditions. Am. J. Phys. 53(6), 570–573 (1985)
Chen, J., Yan, Z., Lin, G., Andresen, B.: On the Curzon-Ahlborn efficiency and its connection with the efficiencies of real heat engines. Energy Convers. Manage. 42(2), 173–181 (2001)
Angulo-Brown, F.: An ecological optimization criterion for finite-time heat engines. J. Appl. Phys. 69(11), 7465–7469 (1991)
Sánchez-Salas, N., López-Palacios, L., Velasco, S., Calvo Hernández, A.: Optimization criteria, bounds, and efficiencies of heat engines. Phys. Rev. E 82(5), 051101 (2010)
de Tomas, C., White, J.M.M., Calvo Hernández, A., Wang, Y., Tu, Z.C.: Low-dissipation heat devices: ussnified trade-off optimization and bounds. Phys. Rev. E 87(1), 012105 (2013)
Long, R., Liu, Z., Liu, W.: Performance optimization of minimally nonlinear irreversible heat engines and refrigerators under a trade-off figure of merit. Phys. Rev. E 89(6), 062119 (2014)
Zhang, Y., Huang, C., Lin, G., Chen, J.: Universality of efficiency at unified trade-off optimization. Phys. Rev. E 93(3), 032152 (2016)
Huang, X.L., Wang, T., Yi, X.X.: Effects of reservoir squeezing on quantum systems and work extraction. Phys. Rev. E 86(5), 051105 (2012)
Manzano, G., Galve, F., Zambrini, R., Parrondo, Juan M. R.: Entropy production and thermodynamic power of the squeezed thermal reservoir. Phys. Rev. E 93(5), 052120 (2016)
Agarwalla, B.K., Jiang, J.H., Segal, D.: Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs. Phys. Rev. B 96(10), 104304 (2017)
Niedenzu, W., Mukherjee, V., Ghosh, A., kofman, A. G., Kurizki, G.: Quantum engine efficiency bound beyond the second law of thermodynamics. Nat. Commun. 9, 165 (2018)
Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299(5608), 862–864 (2003)
Scully, M.O., Chapin, K.R., Dorfman, K.E., Kim, M.B., Svidzinsky, A.: Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. USA 108(37), 15097–15100 (2011)
Perarnau-Llobet, M., Hovhannisyan, K.V., Huber, M., Skrzypczyk, P., Brunner, N., Acín, A.: Extractable work from correlations. Phys. Rev. X 5(4), 041011 (2015)
Klaers, J., Faelt, S., Imamoglu, A., Togan, E.: Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the carnot limit. Phys. Rev. X 7(3), 031044 (2017)
Klatzow, J., Becker, J.N., Ledingham, P.M., Weinzetl, C., Kaczmarek, K.T., Saunders, D.J., Nunn, J., Walmsley, I.A., Uzdin, R., Poem, E.: Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122(11), 110601 (2019)
Abah, O., Lutz, E.: Efficiency of heat engines coupled to nonequilibrium reservoirs. Europhys. Lett. 106(2), 20001 (2014)
Roßnagel, J., Abah, O., Schmidt-Kaler, F., Singer, K., Lutz, E.: Nanoscale heat engine beyond the carnot limit. Phys. Rev. Lett. 112(3), 030602 (2014)
Zhang, Y.: Optimization performance of quantum Otto heat engines and refrigerators with squeezed thermal reservoirs. arXiv:1903.11931 [quant-ph] (2019)
Lin, B., Chen, J.: Performance analysis of an irreversible quantum heat engine working with harmonic oscillators. Phys. Rev. E 67(4), 046105 (2003)
Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76(3), 031105 (2007)
Abah, O., Lutz, E.: Optimal performance of a quantum Otto refrigerator. Europhys. Lett. 113(6), 60002 (2016)
Deffner, S., Lutz, E.: Nonequilibrium work distribution of a quantum harmonic oscillator. Phys. Rev. E 77(2), 021128 (2008)
Deffner, S., Abah, O., Lutz, E.: Quantum work statistics of linear and nonlinear parametric oscillators. Chem. Phys. 375(2), 200–208 (2010)
Husimi, K.: Miscellanea in Elementary Quantum Mechanics. II. Prog. Theor. Phys. 9(4), 381–402 (1953)
Acknowledgements
This paper is supported by the National Natural Science Foundation of China (Nos. 11675132 and 11947010), the Science and Technology Base and Talent Project of Guangxi (No. AD19110104), and the Guangxi University of Science and Technology Foundation for PhDs (No. 18Z11).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, Y., Guo, J. & Chen, J. Unified trade-off optimization of quantum Otto heat engines with squeezed thermal reservoirs. Quantum Inf Process 19, 268 (2020). https://doi.org/10.1007/s11128-020-02774-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02774-7