Abstract
We develop a fast divide-and-conquer indirect collocation method for the homogeneous Dirichlet boundary value problem of variable-order space-fractional diffusion equations. Due to the impact of the space-dependent variable order, the resulting stiffness matrix of the numerical scheme does not have a Toeplitz structure. In this paper, we derive a fast approximation of the coefficient matrix by the means of a finite sum of Toeplitz matrices multiplied by diagonal matrices. We show that the approximation is asymptotically consistent with the original problem, which requires \(O(N\log ^{2} N)\) memory and \(O(N\log ^{3} N)\) computational complexity with N being the numbers of unknowns. Numerical experiments are presented to demonstrate the effectiveness and the efficiency of the proposed method.
Similar content being viewed by others
References
Bai, Z., Lu, K., Pan, J.: Diagonal and Toeplitz splitting iteration methods for diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations. Numer. Lin. Algebra Appl. 24, e2093 (2017)
Bear, J.: Some experiments on dispersion. J. Geophys. Res. 66, 2455–2467 (1961)
Bear, J.: Dynamics of fluids in porous media. Elsevier, New York (1972)
Benson, D., Schumer, R., Meerschaert, M.M., Wheatcraft, S.W.: Fractional dispersion, Lévy motions, and the MADE tracer tests. Transport in Porous Media 42, 211–240 (2001)
Bertaccini, D., Durastante, F.: Block structured preconditioners in tensor form for the all-at-once solution of a finite volume fractional diffusion equation. Appl. Math. Lett. 95, 92–97 (2019)
Bertaccini, D., Durastante, F.: Limited memory block preconditioners for fast solution of fractional partial differential equations. J. Sci. Comput. 77, 950–970 (2018)
Chen, S., Liu, F., Burrage, K.: Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)
Del-Castillo-Negrete, D., Carreras, B. A., Lynch, V. E.: Fractional diffusion in plasma turbulence. Phys. Plasmas 11, 3854 (2004)
Del-Castillo-Negrete, D.: Front propagation in reaction-diffusion systems with anomalous diffusion. Boletí,n de la Sociedad Matemática Mexicana 20, 87–105 (2014)
Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)
Embrechts, P., Maejima, M.: Selfsimilar processes, Princeton series in applied mathematics. University Press, Princeton (2002)
Ervin, V.J., Heuer, N., Roop, J.P.: Regularity of the solution to 1-D fractional order diffusion equations. Math. Comput. 87, 2273–2294 (2018)
Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. PDEs 22, 558–576 (2005)
Fu, H., Ng, M.K., Wang, H.: A divided-and-conquer fast finite difference method for space-time fractional partial differential equation. Comput. Math. Appl. 73(6), 1233–1242 (2017)
Jin, X., Lin, F., Zhao, Z.: Preconditioned iterative methods for two-dimensional space-fractional diffusion equations. Commun. Comput. Phys. 18, 469–488 (2015)
Ke, R., Ng, M. K., Sun, H.: A fast direct method for block triangular Toeplitz-like with tri-diagonal block systems from time-fractional partial differential equations. J. Comput. Phys. 303(C), 203–211 (2015)
Kian, Y., Soccorsi, E., Yamamoto, M.: On time-fractional diffusion equations with space-dependent variable order. Annales Henri Poincare 19, 3855–3881 (2018)
Li, C., Zhao, Z., Chen, Y. Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)
Li, Y., Chen, H., Wang, H.: A mixed-type Galerkin variational formulation and fast algorithms for variable-coefficient fractional diffusion equations. Math. Methods Appl. Sci. https://doi.org/10.1002/mma.4367 (2017)
Lin, F., Yang, S., Jin, X.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)
Lin, X., Ng, M. K., Sun, H.: Efficient preconditioner of one-sided space fractional diffusion equation[J]. BIT Numer Math. (2018)
Lin, X., Ng, M.K., Sun, H.: A splitting preconditioner for toeplitz-like linear systems arising from fractional diffusion equations. SIAMX 38, 1580–1614 (2017)
Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)
Meerschaert, M., Sikorskii, A.: Stochastic models for fractional calculus. De Gruyter Studies in Mathematics (2011)
Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A Math. Gen. 37, R161–R208 (2004)
Pan, J., Ng, M. K., Wang, H.: Fast preconditioned iterative methods for finite volume discretization of steady-state space-fractional diffusion equations. Numer. Algorithms 74, 153–173 (2017)
Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)
Roop, J. P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in \(\mathbb {R}^{2}\). J. Comput. Appl. Math. 193, 243–268 (2006)
Schumer, R., Benson, D.A, Meerschaert, M.M., Wheatcraft, S. W.: Eulerian derivation of the fractional advection-dispersion equation. J. Contaminant Hydrology 48, 69–88 (2001)
Sun, H., Chang, A., Zhang, Y., Chen, W.: A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications. Fract. Calc. Appl. Anal. 22, 27–59 (2019)
Sun, H., Chen, W., Chen, Y.: Variable-order fractional differential operators in anomalous diffusion modeling. Physica A: Stat. Mech. Appl. 388, 4586–4592 (2009)
Varah J.: A lower bound for the smallest singular value of a matrix[J]. Linear Algebra Appl 11(1), 3–5 (1975)
Wang, H., Du, N.: A superfast-preconditioned iterative method for steady-state space-fractional diffusion equations. J. Comput. Phys. 240, 49–57 (2013)
Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^{2} {N})\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)
Wang, H., Zheng, X.: Wellposedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 475, 1778–1802 (2019)
Zeng, F., Zhang, Z., Karniadakis, G.: A generalized spectral collocation method with tunable accuracy for variable-order fractional differential equations. SIAM Sci. Comp. 37, A2710–A2732 (2015)
Zhao, Z., Jin, X., Lin, M.: Preconditioned iterative methods for space-time fractional advection-diffusion equations. J. Comput. Phys. 319, 266–279 (2016)
Zheng, X., Wang, H.: An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes. SIAM Numer. Anal. 58, 330–352 (2020)
Zheng, X., Wang, H.: Wellposedness and regularity of a nonlinear variable-order fractional wave equation. Appl. Math. Lett. 95, 29–35 (2019)
Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM Numer. Anal. 47, 1760–1781 (2009)
Acknowledgments
The authors would like to express their most sincere thanks to the referees for their very helpful comments and suggestions, which greatly improved the quality of this paper.
Funding
This work was funded by the OSD/ARO MURI Grant W911NF-15-1-0562, by the National Science Foundation under grant DMS-1620194, by the National Natural Science Foundation of China (No. 11971482), by the Natural Science Foundation of Shandong Province (No. ZR2017MA006, No. ZR2019BA026), and by the China Scholarship Council (File No. 2018063-20326).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jia, J., Zheng, X., Fu, H. et al. A fast method for variable-order space-fractional diffusion equations. Numer Algor 85, 1519–1540 (2020). https://doi.org/10.1007/s11075-020-00875-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-020-00875-z
Keywords
- Variable-order space-fractional diffusion equation
- Collocation method
- Divide-and-conquer algorithm
- Toeplitz matrix