Finite element solution of a linear mixed-type functional differential equation | Numerical Algorithms Skip to main content
Log in

Finite element solution of a linear mixed-type functional differential equation

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper is devoted to the approximate solution of a linear first-order functional differential equation which involves delayed and advanced arguments. We seek a solution x, defined for t ∈ (0, k − 1],(k ∈ IN ), which takes given values on the intervals [ − 1, 0] and (k − 1, k]. Continuing the work started in previous articles on this subject, we introduce and analyse a computational algorithm based on the finite element method for the solution of this problem which is applicable both in the case of constant and variable coefficients. Numerical results are presented and compared with the results obtained by other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abell, K.A., Elmer, C.E., Humphries, A.R., Vleck, E.S.: Computation of mixed type functional differential boundary value problems. SIADS 4 3, 755–781 (2005)

    Google Scholar 

  2. d’Albis, H., Augeraud-Veron, E.: Competitive growth in a life-cycle model: existence and dynamics. Int. Econ. Rev. 50, 459–484 (2009)

    Article  MathSciNet  Google Scholar 

  3. Ascher, U.M., Mattheij, R.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, p. 69. SIAM (1995)

  4. Boucekkine, R., de La Croix, D., Licandro, O.: Modeling vintage structures with DDEs: principles and applications. Math. Popul. Stud. 11, 151–179 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chi, H., Bell, J., Hassard, B.: Numerical solution of a nonlinear advance-delay-differential equation from nerve conduction theory. J. Math. Biol. 24, 583–601 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  6. Collard, F., Licandro, O., Puch, L.A.: The short-run dynamics of optimal growth models with delays. Published by Fundacion de Estudios de Economia Aplicada. Available online: http://www.fedea.es/pub/Papers/2004/dt2004-05.pdf

  7. Ford, N.J., Lumb, P.M.: Mixed-type functional differental equations: a numerical approach. J. Comput. Appl. Math 229, 471–479 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  8. Ford, N.J., Lumb, P.M.: Mixed-type functional differential equations: a numerical approach (extended version). Tech. Report 2007: 1, Depart. of Math., Univ. of Chester (2007)

  9. Ford, N.J., Lumb, P.M., Lima, P.M., Teodoro, M.F.: The numerical solution of forward-backward differential equations: decomposition and related issues. J. Comput. Appl. Math. 234, 2745–2756 (2010)

    Article  MATH  Google Scholar 

  10. Harterich, J., Sandstede, B., Scheel, A.: Exponential dichotomies for linear non-autonomous functional differential equations of mixed type. Indiana Univ. Math. J. 51(5), 94–101 (2002)

    Article  MathSciNet  Google Scholar 

  11. Lima, P.M., Teodoro, M.F., Ford, N.J., Lumb, P.M.: Analytical and numerical investigation of mixed type functional differential equations. J. Comput. Appl. Math. 234, 2826–2837 (2010)

    Article  MATH  Google Scholar 

  12. Lima, P.M., Teodoro, M.F., Ford, N.J., Lumb, P.M.: Analytical and numerical investigation of mixed type functional differential equations (extended version) (2010) (To appear as a tech. report at the University of Chester)

  13. Mallet-Paret, J.: The Fredholm alternative or functional differential equations of mixed type. J. Dyn. Differ. Equ. 11, 1–47 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Mallet-Paret, J., Lunel, S.M.V.: Mixed-type functional differential equations, holomorphic factorization and applications. In: Proc. of Equadiff 2003, Inter. Conf. on Diff. Equations, HASSELT 2003, pp. 73–89. World Scientific, Singapore (2005)

    Chapter  Google Scholar 

  15. Rustichini, A.: Functional differential equations of mixed type: the linear autonomous case. J. Dyn. Differ. Equ. 1(2), 121–143 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rustichini, A.: Hopf bifurcation for functional differential equations of mixed type. J. Dyn. Differ. Equ. 1, 145–177 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Strang, G., Fix, G.: An Analysis of the Finite Element Method, pp. 51–62. Prentice- Hall (1973)

  18. Teodoro, M.F., Lima, P.M., Ford, N.J., Lumb, P.M.: New approach to the numerical solution of forward-backward equations. Front. Math. China 4(1), 155–168 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Teodoro, M.F., Ford, N., Lima, P.M., Lumb, P.: Numerical modelling of a functional differential equation with deviating arguments using a collocation method. In: Inter. Conference on Numerical Analysis and Applied Mathematics, Kos 2008, AIP Proc., vol. 1048, pp. 553–557 (2008)

  20. Teodoro, M.F., Lima, P.M., Ford, N.J., Lumb, P.M.: Numerical approximation of forward-backward differential equations by a finite element method. In: Proceedings of CMMSE 2009, 9th International Computational and Mathematical Methods in Science and Engineering, Gijon, Spain, vol. 3, pp. 1010–1019. ISBN:978-84-612-9727-6 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Miguel Lima.

Additional information

M. Filomena Teodoro acknowledges support from FCT, grant SFRH/BD/37528/2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lima, P.M., Teodoro, M.F., Ford, N.J. et al. Finite element solution of a linear mixed-type functional differential equation. Numer Algor 55, 301–320 (2010). https://doi.org/10.1007/s11075-010-9412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-010-9412-y

Keywords

Mathematics Subject Classifications (2010)