Model reduction using the Vorobyev moment problem | Numerical Algorithms
Skip to main content

Model reduction using the Vorobyev moment problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Given a nonsingular complex matrix \(A\in{\mathbb C}^{N\times N}\) and complex vectors v and w of length N, one may wish to estimate the quadratic form w * A  − 1 v, where w * denotes the conjugate transpose of w. This problem appears in many applications, and Gene Golub was the key figure in its investigations for decades. He focused mainly on the case A Hermitian positive definite (HPD) and emphasized the relationship of the algebraically formulated problems with classical topics in analysis - moments, orthogonal polynomials and quadrature. The essence of his view can be found in his contribution Matrix Computations and the Theory of Moments, given at the International Congress of Mathematicians in Zürich in 1994. As in many other areas, Gene Golub has inspired a long list of coauthors for work on the problem, and our contribution can also be seen as a consequence of his lasting inspiration. In this paper we will consider a general mathematical concept of matching moments model reduction, which as well as its use in many other applications, is the basis for the development of various approaches for estimation of the quadratic form above. The idea of model reduction via matching moments is well known and widely used in approximation of dynamical systems, but it goes back to Stieltjes, with some preceding work done by Chebyshev and Heine. The algebraic moment matching problem can for A HPD be formulated as a variant of the Stieltjes moment problem, and can be solved using Gauss-Christoffel quadrature. Using the operator moment problem suggested by Vorobyev, we will generalize model reduction based on matching moments to the non-Hermitian case in a straightforward way. Unlike in the model reduction literature, the presented proofs follow directly from the construction of the Vorobyev moment problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akhiezer, N.I.: The classical moment problem and some related questions in analysis. Translated by N. Kemmer, Oliver & Boyd, Edinburgh (1965)

    MATH  Google Scholar 

  2. Antoulas, A.C.: Approximation of large-scale dynamical systems. In: Advances in Design and Control, vol. 6. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2005). With a foreword by Jan C. Willems

    Google Scholar 

  3. Arioli, M.: A stopping criterion for the conjugate gradient algorithms in a finite element method framework. Numer. Math. 97(1), 1–24 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arioli, M., Loghin, D., Wathen, A.J.: Stopping criteria for iterations in finite element methods. Numer. Math. 99(3), 381–410 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Arioli, M., Noulard, E., Russo, A.: Stopping criteria for iterative methods: applications to PDE’s. Calcolo 38(2), 97–112 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bai, Z.: Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43(1–2), 9–44 (2002). 19th Dundee Biennial Conference on Numerical Analysis (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Brezinski, C.: Projection methods for systems of equations. In: Studies in Computational Mathematics, vol. 7. North-Holland, Amsterdam (1997)

    Google Scholar 

  8. Calvetti, D., Kim, S.-M., Reichel, L.: Quadrature rules based on the Arnoldi process. SIAM J. Matrix Anal. Appl. 26(3), 765–781 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Christoffel, E.B.: Ueber die gaussische quadratur und eine verallgemeinerung derselben. J. Reine Angew. Math. 55, 61–82 (1858); Ges. Math. Abhandlungen I, 65–87

    MATH  Google Scholar 

  10. Davis, P.J., Rabinowitz, P.: Methods of numerical integration. In: Computer Science and Applied Mathematics, 2nd edn. Academic, Orlando (1984)

    Google Scholar 

  11. Eiermann, M., Ernst, O.G.: Geometric aspects of the theory of Krylov subspace methods. Acta Numer. 10, 251–312 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fischer, B.: Polynomial based iteration methods for symmetric linear systems. In: Wiley-Teubner Series Advances in Numerical Mathematics. Wiley, Chichester (1996)

    Google Scholar 

  13. Fischer, B., Freund, R.W.: On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices. SIAM J. Sci. Comput. 15(2), 408–426 (1994). Iterative methods in numerical linear algebra (Copper Mountain Resort, CO, 1992)

    Article  MATH  MathSciNet  Google Scholar 

  14. Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14(1), 137–158 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  15. Freund, R.W., Hochbruck, M.: Gauss quadratures associated with the Arnoldi process and the Lanczos algorithm. In: Moonen, M.S., Golub, G.H., De Moor, B.L.R. (eds.) Linear Algebra for Large Scale and Real-time Applications, NATO Advanced Science Institutes Series E: Applied Sciences, vol. 232, pp. 377–380. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  16. Gantmacher, F.R., Krein, M.G.: Ostsilljatsionnye Matritsy i Jadra i Malye Kolebania Mekhanicheskikh Sistem. Gosudarstvjennoe Izdatjelstvo Techniko – Teoretitcheskoj Literatury, Moscow (1950) [English translation based on the 1941 Russian original “Oscillation matrices and kernels and small vibrations of mechanical systems” edited and with a preface by Alex Eremenko. AMS Chelsea, Providence (2002)]

    Google Scholar 

  17. Gauss, C.F.: Methodus nova integralium valores per approximationem inveniendi. Comment. Soc. R. Sci. Gott. 3(Werke III), 163–196 (1814)

    Google Scholar 

  18. Gautschi, W.: A survey of Gauss-Christoffel quadrature formulae. In: Butzer, P.L., Fehér, F. (eds.) E. B. Christoffel; the Influence of His Work in Mathematics and the Physical Sciences (Aachen/Monschau, 1979), pp. 72–147. Birkhäuser, Basel (1981)

    Google Scholar 

  19. Gautschi, W.: The interplay between classical analysis and (numerical) linear algebra—a tribute to Gene H. Golub. Electron. Trans. Numer. Anal. 13, 119–147 (2002)

    MATH  MathSciNet  Google Scholar 

  20. Gautschi, W.: Orthogonal polynomials, computation and approximation. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2004)

    Google Scholar 

  21. Goldstine, H.H.: A History of Numerical Analysis from the 16th through the 19th Century. Springer-Verlag, New York (1977). Studies in the History of Mathematics and Physical Sciences, vol. 2

    MATH  Google Scholar 

  22. Golub, G.H.: Matrix computation and the theory of moments. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2, pp. 1440–1448 (Zürich, 1994). Birkhäuser, Basel (1995)

  23. Golub, G.H.: Milestones in Matrix Computation: Selected Works of Gene H. Golub, with Commentaries. Edited by Raymond H. Chan, Chein Greif, and Diane P. O’Leary. Oxford Science Publications, Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  24. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Numerical analysis 1993 (Dundee, 1993), Pitman Res. Notes Math. Ser., vol. 303, pp. 105–156. Longman Sci. Tech., Harlow (1994)

    Google Scholar 

  25. Golub, G.H., Meurant, G.: Matrices, moments and quadrature. II. How to compute the norm of the error in iterative methods. BIT 37(3), 687–705 (1997). Direct methods, linear algebra in optimization, iterative methods (Toulouse, 1995/1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Golub, G.H., Stoll, M., Wathen, A.: Approximation of the scattering amplitude and linear systems. Electron. Trans. Numer. Anal. (2008, in press)

  27. Golub, G.H., Strakoš, Z.: Estimates in quadratic formulas. Numer. Algorithms 8(2–4), 241–268 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)

    MATH  MathSciNet  Google Scholar 

  29. Jacobi, C.G.J.: Ueber gauss neue methode, die werthe der integrale näherungsweise zu finden. J. Reine Angew. Math. 1, 301–308 (1826); Math. Werke III, 97–113

    MATH  Google Scholar 

  30. Jiránek, P., Strakoš, Z., Vohralík, M.: A posteriori error estimates including algebraic error: computable upper bounds and stopping criteria for iterative solvers. (2008, in preparation)

  31. Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45, 255–282 (1950)

    MathSciNet  Google Scholar 

  32. Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stand. 49, 33–53 (1952)

    MathSciNet  Google Scholar 

  33. Meurant, G.: The Lanczos and Conjugate Gradient Algorithms—From Theory to Finite Precision Computations. SIAM, Philadelphia (2006)

    Google Scholar 

  34. Meurant, G., Strakoš, Z.: The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numer. 15, 471–542 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. O’Leary, D.P., Strakoš, Z., Tichý, P.: On sensitivity of Gauss-Christoffel quadrature. Numer. Math. 107(1), 147–174 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2003)

    MATH  Google Scholar 

  37. Saylor, P.E., Smolarski, D.C.: Addendum to: “why Gaussian quadrature in the complex plane?” [Numer. Algorithms 26(3), 251–280 (2001)]. Numer. Algorithms 27(2), 215–217 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Saylor, P.E., Smolarski, D.C.: Why Gaussian quadrature in the complex plane? Numer. Algorithms 26(3), 251–280 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  39. Shohat, J.A., Tamarkin, J.D.: The problem of moments. American Mathematical Society Mathematical surveys, vol. II. American Mathematical Society, New York (1943)

    MATH  Google Scholar 

  40. Stieltjes, T.J.: Sur l’évaluation approchée des intégrales. C. R. Acad. Sci. Paris 97, 740–742, 798–799 (1883); Oeuvres I 314–316, 317–318

  41. Stieltjes, T.J.: Note sur quelques formules pour l’évaluation de certaines intégrales. Bull. Astron. (Paris) 1, 568 (1884); Oeuvres I, 426–427

    MathSciNet  Google Scholar 

  42. Stieltjes, T.J.: Quelques recherches sur la théorie des quadratures dites mécaniques. Ann. Sci. École Norm. Sup. (3) 1, 409–426 (1884); Oeuvres I, 377–396

    MathSciNet  Google Scholar 

  43. Stieltjes, T.J.: Sur une généralisation de la théorie des quadratures mécaniques. C. R. Acad. Sci. Paris 99, 850–851 (1884); Oeuvres I, 428–429

    Google Scholar 

  44. Strakoš, Z., Tichý, P.: On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal. 13, 56–80 (2002) (electronic)

    MATH  MathSciNet  Google Scholar 

  45. Strakoš, Z., Tichý, P.: Estimation of c A −1 b via matching moments (in preparation)

  46. Vorobyev, Y.V.: Methods of moments in applied mathematics. Translated from the Russian by Bernard Seckler. Gordon and Breach Science Publishers, New York (1965)

    MATH  Google Scholar 

  47. Warnick, K.F., Chew, W.C.: Numerical simulation methods for rough surface scattering. Waves Random Media 11(1), R1–R30 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Strakoš.

Additional information

The work was supported by the GAAS grant IAA100300802 and by the Institutional Research Plan AV0Z10300504.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strakoš, Z. Model reduction using the Vorobyev moment problem. Numer Algor 51, 363–379 (2009). https://doi.org/10.1007/s11075-008-9237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-008-9237-0

Keywords

Mathematics Subject Classifications (2000)