Abstract
Given a nonsingular complex matrix \(A\in{\mathbb C}^{N\times N}\) and complex vectors v and w of length N, one may wish to estimate the quadratic form w * A − 1 v, where w * denotes the conjugate transpose of w. This problem appears in many applications, and Gene Golub was the key figure in its investigations for decades. He focused mainly on the case A Hermitian positive definite (HPD) and emphasized the relationship of the algebraically formulated problems with classical topics in analysis - moments, orthogonal polynomials and quadrature. The essence of his view can be found in his contribution Matrix Computations and the Theory of Moments, given at the International Congress of Mathematicians in Zürich in 1994. As in many other areas, Gene Golub has inspired a long list of coauthors for work on the problem, and our contribution can also be seen as a consequence of his lasting inspiration. In this paper we will consider a general mathematical concept of matching moments model reduction, which as well as its use in many other applications, is the basis for the development of various approaches for estimation of the quadratic form above. The idea of model reduction via matching moments is well known and widely used in approximation of dynamical systems, but it goes back to Stieltjes, with some preceding work done by Chebyshev and Heine. The algebraic moment matching problem can for A HPD be formulated as a variant of the Stieltjes moment problem, and can be solved using Gauss-Christoffel quadrature. Using the operator moment problem suggested by Vorobyev, we will generalize model reduction based on matching moments to the non-Hermitian case in a straightforward way. Unlike in the model reduction literature, the presented proofs follow directly from the construction of the Vorobyev moment problem.
Similar content being viewed by others
References
Akhiezer, N.I.: The classical moment problem and some related questions in analysis. Translated by N. Kemmer, Oliver & Boyd, Edinburgh (1965)
Antoulas, A.C.: Approximation of large-scale dynamical systems. In: Advances in Design and Control, vol. 6. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2005). With a foreword by Jan C. Willems
Arioli, M.: A stopping criterion for the conjugate gradient algorithms in a finite element method framework. Numer. Math. 97(1), 1–24 (2004)
Arioli, M., Loghin, D., Wathen, A.J.: Stopping criteria for iterations in finite element methods. Numer. Math. 99(3), 381–410 (2005)
Arioli, M., Noulard, E., Russo, A.: Stopping criteria for iterative methods: applications to PDE’s. Calcolo 38(2), 97–112 (2001)
Bai, Z.: Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43(1–2), 9–44 (2002). 19th Dundee Biennial Conference on Numerical Analysis (2001)
Brezinski, C.: Projection methods for systems of equations. In: Studies in Computational Mathematics, vol. 7. North-Holland, Amsterdam (1997)
Calvetti, D., Kim, S.-M., Reichel, L.: Quadrature rules based on the Arnoldi process. SIAM J. Matrix Anal. Appl. 26(3), 765–781 (2005)
Christoffel, E.B.: Ueber die gaussische quadratur und eine verallgemeinerung derselben. J. Reine Angew. Math. 55, 61–82 (1858); Ges. Math. Abhandlungen I, 65–87
Davis, P.J., Rabinowitz, P.: Methods of numerical integration. In: Computer Science and Applied Mathematics, 2nd edn. Academic, Orlando (1984)
Eiermann, M., Ernst, O.G.: Geometric aspects of the theory of Krylov subspace methods. Acta Numer. 10, 251–312 (2001)
Fischer, B.: Polynomial based iteration methods for symmetric linear systems. In: Wiley-Teubner Series Advances in Numerical Mathematics. Wiley, Chichester (1996)
Fischer, B., Freund, R.W.: On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices. SIAM J. Sci. Comput. 15(2), 408–426 (1994). Iterative methods in numerical linear algebra (Copper Mountain Resort, CO, 1992)
Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14(1), 137–158 (1993)
Freund, R.W., Hochbruck, M.: Gauss quadratures associated with the Arnoldi process and the Lanczos algorithm. In: Moonen, M.S., Golub, G.H., De Moor, B.L.R. (eds.) Linear Algebra for Large Scale and Real-time Applications, NATO Advanced Science Institutes Series E: Applied Sciences, vol. 232, pp. 377–380. Kluwer Academic, Dordrecht (1993)
Gantmacher, F.R., Krein, M.G.: Ostsilljatsionnye Matritsy i Jadra i Malye Kolebania Mekhanicheskikh Sistem. Gosudarstvjennoe Izdatjelstvo Techniko – Teoretitcheskoj Literatury, Moscow (1950) [English translation based on the 1941 Russian original “Oscillation matrices and kernels and small vibrations of mechanical systems” edited and with a preface by Alex Eremenko. AMS Chelsea, Providence (2002)]
Gauss, C.F.: Methodus nova integralium valores per approximationem inveniendi. Comment. Soc. R. Sci. Gott. 3(Werke III), 163–196 (1814)
Gautschi, W.: A survey of Gauss-Christoffel quadrature formulae. In: Butzer, P.L., Fehér, F. (eds.) E. B. Christoffel; the Influence of His Work in Mathematics and the Physical Sciences (Aachen/Monschau, 1979), pp. 72–147. Birkhäuser, Basel (1981)
Gautschi, W.: The interplay between classical analysis and (numerical) linear algebra—a tribute to Gene H. Golub. Electron. Trans. Numer. Anal. 13, 119–147 (2002)
Gautschi, W.: Orthogonal polynomials, computation and approximation. In: Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2004)
Goldstine, H.H.: A History of Numerical Analysis from the 16th through the 19th Century. Springer-Verlag, New York (1977). Studies in the History of Mathematics and Physical Sciences, vol. 2
Golub, G.H.: Matrix computation and the theory of moments. In: Proceedings of the International Congress of Mathematicians, vol. 1, 2, pp. 1440–1448 (Zürich, 1994). Birkhäuser, Basel (1995)
Golub, G.H.: Milestones in Matrix Computation: Selected Works of Gene H. Golub, with Commentaries. Edited by Raymond H. Chan, Chein Greif, and Diane P. O’Leary. Oxford Science Publications, Oxford University Press, Oxford (2007)
Golub, G.H., Meurant, G.: Matrices, moments and quadrature. In: Numerical analysis 1993 (Dundee, 1993), Pitman Res. Notes Math. Ser., vol. 303, pp. 105–156. Longman Sci. Tech., Harlow (1994)
Golub, G.H., Meurant, G.: Matrices, moments and quadrature. II. How to compute the norm of the error in iterative methods. BIT 37(3), 687–705 (1997). Direct methods, linear algebra in optimization, iterative methods (Toulouse, 1995/1996)
Golub, G.H., Stoll, M., Wathen, A.: Approximation of the scattering amplitude and linear systems. Electron. Trans. Numer. Anal. (2008, in press)
Golub, G.H., Strakoš, Z.: Estimates in quadratic formulas. Numer. Algorithms 8(2–4), 241–268 (1994)
Hestenes, M.R., Stiefel, E.: Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 49, 409–436 (1952)
Jacobi, C.G.J.: Ueber gauss neue methode, die werthe der integrale näherungsweise zu finden. J. Reine Angew. Math. 1, 301–308 (1826); Math. Werke III, 97–113
Jiránek, P., Strakoš, Z., Vohralík, M.: A posteriori error estimates including algebraic error: computable upper bounds and stopping criteria for iterative solvers. (2008, in preparation)
Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45, 255–282 (1950)
Lanczos, C.: Solution of systems of linear equations by minimized iterations. J. Res. Natl. Bur. Stand. 49, 33–53 (1952)
Meurant, G.: The Lanczos and Conjugate Gradient Algorithms—From Theory to Finite Precision Computations. SIAM, Philadelphia (2006)
Meurant, G., Strakoš, Z.: The Lanczos and conjugate gradient algorithms in finite precision arithmetic. Acta Numer. 15, 471–542 (2006)
O’Leary, D.P., Strakoš, Z., Tichý, P.: On sensitivity of Gauss-Christoffel quadrature. Numer. Math. 107(1), 147–174 (2007)
Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2003)
Saylor, P.E., Smolarski, D.C.: Addendum to: “why Gaussian quadrature in the complex plane?” [Numer. Algorithms 26(3), 251–280 (2001)]. Numer. Algorithms 27(2), 215–217 (2001)
Saylor, P.E., Smolarski, D.C.: Why Gaussian quadrature in the complex plane? Numer. Algorithms 26(3), 251–280 (2001)
Shohat, J.A., Tamarkin, J.D.: The problem of moments. American Mathematical Society Mathematical surveys, vol. II. American Mathematical Society, New York (1943)
Stieltjes, T.J.: Sur l’évaluation approchée des intégrales. C. R. Acad. Sci. Paris 97, 740–742, 798–799 (1883); Oeuvres I 314–316, 317–318
Stieltjes, T.J.: Note sur quelques formules pour l’évaluation de certaines intégrales. Bull. Astron. (Paris) 1, 568 (1884); Oeuvres I, 426–427
Stieltjes, T.J.: Quelques recherches sur la théorie des quadratures dites mécaniques. Ann. Sci. École Norm. Sup. (3) 1, 409–426 (1884); Oeuvres I, 377–396
Stieltjes, T.J.: Sur une généralisation de la théorie des quadratures mécaniques. C. R. Acad. Sci. Paris 99, 850–851 (1884); Oeuvres I, 428–429
Strakoš, Z., Tichý, P.: On error estimation in the conjugate gradient method and why it works in finite precision computations. Electron. Trans. Numer. Anal. 13, 56–80 (2002) (electronic)
Strakoš, Z., Tichý, P.: Estimation of c∗ A −1 b via matching moments (in preparation)
Vorobyev, Y.V.: Methods of moments in applied mathematics. Translated from the Russian by Bernard Seckler. Gordon and Breach Science Publishers, New York (1965)
Warnick, K.F., Chew, W.C.: Numerical simulation methods for rough surface scattering. Waves Random Media 11(1), R1–R30 (2001)
Author information
Authors and Affiliations
Corresponding author
Additional information
The work was supported by the GAAS grant IAA100300802 and by the Institutional Research Plan AV0Z10300504.
Rights and permissions
About this article
Cite this article
Strakoš, Z. Model reduction using the Vorobyev moment problem. Numer Algor 51, 363–379 (2009). https://doi.org/10.1007/s11075-008-9237-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-008-9237-0
Keywords
- Matching moments
- Model reduction
- Krylov subspace methods
- Conjugate gradient method
- Lanczos method
- Arnoldi method
- Gauss-Christoffel quadrature
- Scattering amplitude