Abstract
A new image feature vector named, local color oppugnant quantized extrema pattern (LCOQEP) is proffered in this paper. In the proposed method, color-texture information between two oppugnant colors planes, RGB and HSV is extracted. The proposed approach is different from the local oppugnant color space extrema pattern that explores the directional extrema in RV, GV and BV spaces of an image. In LCOQEP approach, quantized extremas from the oppugnant planes are extracted. Performance evaluation parameters such as precision, recall, average retrieval precision and average retrieval rate are employed to ascertain the efficacy of the devised method. Standard datasets such as Corel (1k, 5k, 10k) and ImageNet-25k are used for experimentation. A substantial improvement in the retrieval performance is observed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Applications to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.
Akata, Z., Perronnin, F., Harchaoui, Z., & Schmid, C. (2014). Good practice in large-scale learning for image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3), 507–520.
Birgale, L., Kokare, M., & Doye, D. (2006). Color and texture features for content based image retrieval. In International conference on computer graphics, image and visualisation, Washington, DC, USA (pp. 146–149).
Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3642–3649). IEEE.
Corel 1000 and Corel 10000 image database. [Online]. http://wang.ist.psu.edu/docs/related.shtml. Accessed 10 Mar 2017.
Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2015). The PASCAL visual object classes challenge: A retrospective. International Journal of Computer Vision, 111(1), 98–136.
Hariprasad Reddy, A., & Subhash Chandra, N. (2015). Local oppugnant color space extrema patterns for content based natural and texture image retrieval. International Journal of Electronics and Communications, 68(1), 290–298.
Heikkila, M., & Pietikainen, A. M. (2006). A texture based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 657–662.
Heikkil, M., Pietikainen, M., & Schmid, C. (2009). Description of interest regions with local binary patterns. Pattern Recognition, 42, 425–436.
Heikkila, M., Pietikainen, M., & Schmid, C. (2009). Description of interest regions with local binary patterns. Journal of Pattern Recognition, 42, 425–436.
Huang, X., Li, S. Z., & Wang, Y. (2004). Shape localization based on statistical method using extended local binary patterns. In Proceedings of international conference on image and graphics (pp. 184–187).
ImageNet-25k database. [Online]. http://www.image-net.org/. Accessed 10 Mar 2017.
Jacob, I. J., Srinivasagan, K. G., & Jayapriya, K. (2014). Local oppugnant color texture pattern for image retrieval system. Pattern Recognition Letters, 42, 72–78.
Jégou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., & Schmid, C. (2012). Aggregating local image descriptors into compact codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9), 1704–1716.
Jhanwar, N., Chaudhuri, S., Seetharaman, G., & Zavidovique, B. (2004). Content-based image retrieval using motif co-occurrence matrix. Image Vision Computing, 22, 1211–1220.
Kaur, H., & Dhir, V. (2017). Local color oppugnant mesh extrema patterns: A new feature descriptor for Image retrieval. Indian Journal of Science and Technology. https://doi.org/10.17485/ijst/2017/v10i18/111691.
Kokare, M., Biswas, P. K., & Chatterji, B. N. (2007). Texture image retrieval using rotated wavelet filters. Journal of Pattern Recognition Letters, 28, 1240–1249.
Koteswara Rao, L., & Venkata Rao, D. (2015). Local quantized extrema patterns for content-based natural and texture image retrieval. Human-Centric Computing and Information Sciences. https://doi.org/10.1186/s13673-015-0044-z.
Koteswara Rao, L., Venkata Rao, D., & Pratap reddy, L. (2016). Local mesh quantized extrema patterns for image retrieval. Springer Plus, 5, 976.
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).
Li, M., & Staunton, R. C. (2008). Optimum Gabor filter design and local binary patterns for texture segmentation. Journal of Pattern Recognition, 29, 664–672.
Lin, C. H., Chen, R. T., & Chan, Y. K. A. (2009). Smart content-based image retrieval system based on color and texture feature. Image Vision Computing, 27, 658–665.
Moghaddam, H. A., Khajoie, T. T., & Rouhi, A. H. (2003). A new algorithm for image indexing and retrieval using wavelet correlogram. In International conference on image processing (Vol. 2, pp. 497–500). Tehran, Iran: K.N. Toosi University of Technology.
Murala, S., Gonde, A. B., & Maheshwari, R. P. (2009). Color and texture features for image indexing and retrieval. In IEEE international advance computing conference, Patiala, India (pp. 1411–1416).
Murala, S., & Jonathan Wu, Q. M. (2013). Local ternary co-occurrence patterns: A new feature descriptor for MRI and CT image retrieval. Neurocomputing, 119(7), 399–412.
Murala, S., & Jonathan Wu, Q. M. (2014). Local mesh patterns versus local binary patterns: Biomedical image indexing and retrieval. IEEE Journal of Biomedical and Health Informatics, 8(3), 929–938.
Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2011). A correlogram algorithm for image indexing and retrieval using wavelet and rotated wavelet filters. International Journal of Signal and Imaging Systems Engineering, 4(1), 27–34.
Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012a). Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking. Signal Processing, 92, 1467–1479.
Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012b). Local tetra patterns: A new feature descriptor for content based image retrieval. IEEE Transactions on Image Processing, 21(5), 2874–2886.
Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012c). Directional local extrema patterns: A new descriptor for content based image retrieval. International Journal of Multimedia Information Retrieval, 1(3), 191–203.
Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012d). Directional binary wavelet patterns for biomedical image indexing and retrieval. Journal of Medical Systems, 36(5), 2865–2879.
Ojala, T., Pietikainen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on feature distributions. Journal of Pattern Recognition, 29(1), 51–59.
Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.
Pietikainen, M., Ojala, T., Scruggs, T., Bowyer, K. W., Jin, C., Hoffman, K., et al. (2000). Overview of the face recognition using feature distributions. Journal of Pattern Recognition, 33(1), 43–52.
Reddy, P. V. B., & Reddy, A. R. M. (2014). Content based image indexing and retrieval using directional local extrema and magnitude patterns. International Journal of Electronics and Communications (AEÜ). https://doi.org/10.1016/j.aeue.2014.01.012.
Saadatmand, M. T., & Moghaddam, H. A. (2005). Enhanced wavelet correlogram methods for image indexing and retrieval. In IEEE International conference on image processing (pp. 541–544). Tehran: K.N. Toosi University of Technology.
Sánchez, J., Perronnin, F., Mensink, T., & Verbeek, J. (2013). Image classification with the fisher vector: Theory and practice. International Journal of Computer Vision, 105(3), 222–245.
Takala, V., Ahonen, T., & Pietikainen, M. (2005). Block-based methods for image retrieval using local binary patterns. In SCIA 2005. LNCS 3450 (pp. 882–891).
Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.
Tsikrika, T., Popescu, A., & Kludas, J. (2011). Overview of the Wikipedia image retrieval task at ImageCLEF 2011. In The working notes for the CLEF 2011 Labs and Workshop, 19–22 September, Amsterdam, The Netherlands.
ul Hussain, S., & Triggs, B. (2012). Visual recognition using local quantized patterns. In ECCV 2012, Part II, LNCS 7573, Italy (pp. 716–729).
Vadivel, A., Shamik, S., & Majumdar, A. K. (2007). An integrated color and intensity co-occurrence matrix. Pattern Recognition Letters, 28, 974–983.
Verma, M., & Raman, B. (2016). Local tri-directional patterns: A new texture feature descriptor for image retrieval. Digital Signal Processing, 51, 62–72.
Yao, C.-H., & Chen, S.-Y. (2003). Retrieval of translated, rotated and scaled color textures. Pattern Recognition, 36, 913–929.
Zhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor. IEEE Transactions on Image Processing, 19(2), 533–544.
Zhao, G., & Pietikainen, M. (2007). Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 915–928.
Acknowledgements
The authors thank Dr. D. Venkata Rao of Narasaraopet Institute of Technology, for some of his suggestions during the initial stages of the work. Authors thank the anonymous reviewers for their valuable suggestions for the improvement of the quality of the paper.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Koteswara Rao, L., Rohini, P. & Pratap Reddy, L. Local color oppugnant quantized extrema patterns for image retrieval. Multidim Syst Sign Process 30, 1413–1435 (2019). https://doi.org/10.1007/s11045-018-0609-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11045-018-0609-x