Local color oppugnant quantized extrema patterns for image retrieval | Multidimensional Systems and Signal Processing Skip to main content
Log in

Local color oppugnant quantized extrema patterns for image retrieval

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

A new image feature vector named, local color oppugnant quantized extrema pattern (LCOQEP) is proffered in this paper. In the proposed method, color-texture information between two oppugnant colors planes, RGB and HSV is extracted. The proposed approach is different from the local oppugnant color space extrema pattern that explores the directional extrema in RV, GV and BV spaces of an image. In LCOQEP approach, quantized extremas from the oppugnant planes are extracted. Performance evaluation parameters such as precision, recall, average retrieval precision and average retrieval rate are employed to ascertain the efficacy of the devised method. Standard datasets such as Corel (1k, 5k, 10k) and ImageNet-25k are used for experimentation. A substantial improvement in the retrieval performance is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ahonen, T., Hadid, A., & Pietikainen, M. (2006). Face description with local binary patterns: Applications to face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12), 2037–2041.

    MATH  Google Scholar 

  • Akata, Z., Perronnin, F., Harchaoui, Z., & Schmid, C. (2014). Good practice in large-scale learning for image classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(3), 507–520.

    Google Scholar 

  • Birgale, L., Kokare, M., & Doye, D. (2006). Color and texture features for content based image retrieval. In International conference on computer graphics, image and visualisation, Washington, DC, USA (pp. 146–149).

  • Ciresan, D., Meier, U., & Schmidhuber, J. (2012). Multi-column deep neural networks for image classification. In 2012 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 3642–3649). IEEE.

  • Corel 1000 and Corel 10000 image database. [Online]. http://wang.ist.psu.edu/docs/related.shtml. Accessed 10 Mar 2017.

  • Everingham, M., Eslami, S. M. A., Van Gool, L., Williams, C. K. I., Winn, J., & Zisserman, A. (2015). The PASCAL visual object classes challenge: A retrospective. International Journal of Computer Vision, 111(1), 98–136.

    Google Scholar 

  • Hariprasad Reddy, A., & Subhash Chandra, N. (2015). Local oppugnant color space extrema patterns for content based natural and texture image retrieval. International Journal of Electronics and Communications, 68(1), 290–298.

    Google Scholar 

  • Heikkila, M., & Pietikainen, A. M. (2006). A texture based method for modeling the background and detecting moving objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4), 657–662.

    Google Scholar 

  • Heikkil, M., Pietikainen, M., & Schmid, C. (2009). Description of interest regions with local binary patterns. Pattern Recognition, 42, 425–436.

    MATH  Google Scholar 

  • Heikkila, M., Pietikainen, M., & Schmid, C. (2009). Description of interest regions with local binary patterns. Journal of Pattern Recognition, 42, 425–436.

    MATH  Google Scholar 

  • Huang, X., Li, S. Z., & Wang, Y. (2004). Shape localization based on statistical method using extended local binary patterns. In Proceedings of international conference on image and graphics (pp. 184–187).

  • ImageNet-25k database. [Online]. http://www.image-net.org/. Accessed 10 Mar 2017.

  • Jacob, I. J., Srinivasagan, K. G., & Jayapriya, K. (2014). Local oppugnant color texture pattern for image retrieval system. Pattern Recognition Letters, 42, 72–78.

    Google Scholar 

  • Jégou, H., Perronnin, F., Douze, M., Sanchez, J., Perez, P., & Schmid, C. (2012). Aggregating local image descriptors into compact codes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9), 1704–1716.

    Google Scholar 

  • Jhanwar, N., Chaudhuri, S., Seetharaman, G., & Zavidovique, B. (2004). Content-based image retrieval using motif co-occurrence matrix. Image Vision Computing, 22, 1211–1220.

    Google Scholar 

  • Kaur, H., & Dhir, V. (2017). Local color oppugnant mesh extrema patterns: A new feature descriptor for Image retrieval. Indian Journal of Science and Technology. https://doi.org/10.17485/ijst/2017/v10i18/111691.

    Article  Google Scholar 

  • Kokare, M., Biswas, P. K., & Chatterji, B. N. (2007). Texture image retrieval using rotated wavelet filters. Journal of Pattern Recognition Letters, 28, 1240–1249.

    Google Scholar 

  • Koteswara Rao, L., & Venkata Rao, D. (2015). Local quantized extrema patterns for content-based natural and texture image retrieval. Human-Centric Computing and Information Sciences. https://doi.org/10.1186/s13673-015-0044-z.

    Article  Google Scholar 

  • Koteswara Rao, L., Venkata Rao, D., & Pratap reddy, L. (2016). Local mesh quantized extrema patterns for image retrieval. Springer Plus, 5, 976.

    Google Scholar 

  • Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097–1105).

  • Li, M., & Staunton, R. C. (2008). Optimum Gabor filter design and local binary patterns for texture segmentation. Journal of Pattern Recognition, 29, 664–672.

    Google Scholar 

  • Lin, C. H., Chen, R. T., & Chan, Y. K. A. (2009). Smart content-based image retrieval system based on color and texture feature. Image Vision Computing, 27, 658–665.

    Google Scholar 

  • Moghaddam, H. A., Khajoie, T. T., & Rouhi, A. H. (2003). A new algorithm for image indexing and retrieval using wavelet correlogram. In International conference on image processing (Vol. 2, pp. 497–500). Tehran, Iran: K.N. Toosi University of Technology.

  • Murala, S., Gonde, A. B., & Maheshwari, R. P. (2009). Color and texture features for image indexing and retrieval. In IEEE international advance computing conference, Patiala, India (pp. 1411–1416).

  • Murala, S., & Jonathan Wu, Q. M. (2013). Local ternary co-occurrence patterns: A new feature descriptor for MRI and CT image retrieval. Neurocomputing, 119(7), 399–412.

    Google Scholar 

  • Murala, S., & Jonathan Wu, Q. M. (2014). Local mesh patterns versus local binary patterns: Biomedical image indexing and retrieval. IEEE Journal of Biomedical and Health Informatics, 8(3), 929–938.

    Google Scholar 

  • Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2011). A correlogram algorithm for image indexing and retrieval using wavelet and rotated wavelet filters. International Journal of Signal and Imaging Systems Engineering, 4(1), 27–34.

    Google Scholar 

  • Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012a). Local maximum edge binary patterns: A new descriptor for image retrieval and object tracking. Signal Processing, 92, 1467–1479.

    MATH  Google Scholar 

  • Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012b). Local tetra patterns: A new feature descriptor for content based image retrieval. IEEE Transactions on Image Processing, 21(5), 2874–2886.

    MathSciNet  MATH  Google Scholar 

  • Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012c). Directional local extrema patterns: A new descriptor for content based image retrieval. International Journal of Multimedia Information Retrieval, 1(3), 191–203.

    MATH  Google Scholar 

  • Murala, S., Maheshwari, R. P., & Balasubramanian, R. (2012d). Directional binary wavelet patterns for biomedical image indexing and retrieval. Journal of Medical Systems, 36(5), 2865–2879.

    Google Scholar 

  • Ojala, T., Pietikainen, M., & Harwood, D. (1996). A comparative study of texture measures with classification based on feature distributions. Journal of Pattern Recognition, 29(1), 51–59.

    Google Scholar 

  • Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    MATH  Google Scholar 

  • Pietikainen, M., Ojala, T., Scruggs, T., Bowyer, K. W., Jin, C., Hoffman, K., et al. (2000). Overview of the face recognition using feature distributions. Journal of Pattern Recognition, 33(1), 43–52.

    Google Scholar 

  • Reddy, P. V. B., & Reddy, A. R. M. (2014). Content based image indexing and retrieval using directional local extrema and magnitude patterns. International Journal of Electronics and Communications (AEÜ). https://doi.org/10.1016/j.aeue.2014.01.012.

    Article  Google Scholar 

  • Saadatmand, M. T., & Moghaddam, H. A. (2005). Enhanced wavelet correlogram methods for image indexing and retrieval. In IEEE International conference on image processing (pp. 541–544). Tehran: K.N. Toosi University of Technology.

  • Sánchez, J., Perronnin, F., Mensink, T., & Verbeek, J. (2013). Image classification with the fisher vector: Theory and practice. International Journal of Computer Vision, 105(3), 222–245.

    MathSciNet  MATH  Google Scholar 

  • Takala, V., Ahonen, T., & Pietikainen, M. (2005). Block-based methods for image retrieval using local binary patterns. In SCIA 2005. LNCS 3450 (pp. 882–891).

  • Tan, X., & Triggs, B. (2010). Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing, 19(6), 1635–1650.

    MathSciNet  MATH  Google Scholar 

  • Tsikrika, T., Popescu, A., & Kludas, J. (2011). Overview of the Wikipedia image retrieval task at ImageCLEF 2011. In The working notes for the CLEF 2011 Labs and Workshop, 19–22 September, Amsterdam, The Netherlands.

  • ul Hussain, S., & Triggs, B. (2012). Visual recognition using local quantized patterns. In ECCV 2012, Part II, LNCS 7573, Italy (pp. 716–729).

  • Vadivel, A., Shamik, S., & Majumdar, A. K. (2007). An integrated color and intensity co-occurrence matrix. Pattern Recognition Letters, 28, 974–983.

    Google Scholar 

  • Verma, M., & Raman, B. (2016). Local tri-directional patterns: A new texture feature descriptor for image retrieval. Digital Signal Processing, 51, 62–72.

    MathSciNet  Google Scholar 

  • Yao, C.-H., & Chen, S.-Y. (2003). Retrieval of translated, rotated and scaled color textures. Pattern Recognition, 36, 913–929.

    Google Scholar 

  • Zhang, B., Gao, Y., Zhao, S., & Liu, J. (2010). Local derivative pattern versus local binary pattern: Face recognition with higher-order local pattern descriptor. IEEE Transactions on Image Processing, 19(2), 533–544.

    MathSciNet  MATH  Google Scholar 

  • Zhao, G., & Pietikainen, M. (2007). Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6), 915–928.

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. D. Venkata Rao of Narasaraopet Institute of Technology, for some of his suggestions during the initial stages of the work. Authors thank the anonymous reviewers for their valuable suggestions for the improvement of the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Koteswara Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koteswara Rao, L., Rohini, P. & Pratap Reddy, L. Local color oppugnant quantized extrema patterns for image retrieval. Multidim Syst Sign Process 30, 1413–1435 (2019). https://doi.org/10.1007/s11045-018-0609-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0609-x

Keywords

Navigation