Sparsity and incoherence in orthogonal matching pursuit | Multidimensional Systems and Signal Processing Skip to main content
Log in

Sparsity and incoherence in orthogonal matching pursuit

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Recovery of sparse signals via approximation methods has been extensively studied in recently years. We consider the nonuniform recovery of orthogonal matching pursuit (OMP) from fewer noisy random measurements. Rows of sensing matrices are assumed to be drawn independently from a probability distribution obeying the isotropy property and the incoherence property. Our models not only include the standard sensing matrices in compressed sensing context, but also cover other new sensing matrices such as random convolutions, subsampled tight or continuous frames. Given m admissible random measurements of a fixed s-sparse signal \(\varvec{x}\in \mathbb {R}^n\), we show that OMP can recover the support of \(\varvec{x}\) exactly after s iterations with overwhelming probability provided that

$$\begin{aligned} m=O( s(s+\log (n-s))). \end{aligned}$$

It follows that the approximation order of OMP is

$$\begin{aligned} \Vert \varvec{x}- \varvec{x}_j\Vert =O(\eta ^j) \end{aligned}$$

where \(0<\eta <1\) and \(\varvec{x}_j\) denotes the recovered signal at j-th iteration. As a byproduct of the proof, the necessary number of measurements to ensure sparse recovery by \(l_1\)-minimization with random partial circulant or Toeplitz matrices is proved to be optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Bajwa, W. U., Haupt, J., Raz, G., Wright, S. J., Nowak, R., & Toeplitz-structured compressed sensing matrices. (2007). IEEE/SP 14th workshop on statistical signal processing. Madison, WI, USA, pp. 294–298.

  • Cai, T., & Wang, L. (2011). Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Transactions on Information Theory, 57(11), 4680–4688.

    Article  MathSciNet  MATH  Google Scholar 

  • Cai, T., & Zhang, A. (2014). Sparse representation of a polytope and recovery of sparse signals and low-rank matrices. IEEE Transactions on Information Theory, 60, 122–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Candès, E. J., & Plan, Y. (2011). A probabilistic and RIPless theory of compressed sensing. IEEE Transactions on Information Theory, 57(11), 7235–7254.

    Article  MathSciNet  MATH  Google Scholar 

  • Candès, E. J., & Romberg, J. (2007). Sparsity and incoherence in compressive sampling. Inverse Problems, 23(3), 969–985.

    Article  MathSciNet  MATH  Google Scholar 

  • Candès, E. J., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.

    Article  MathSciNet  MATH  Google Scholar 

  • Candès, E. J., & Tao, T. (2006). Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Transactions on Information Theory, 52(12), 5406–5425.

    Article  MathSciNet  MATH  Google Scholar 

  • Coifman, R., Geshwind, F., & Meyer, Y. (2001). Noiselets. Applied and Computational Harmonic Analysis, 10, 27–44.

    Article  MathSciNet  MATH  Google Scholar 

  • Cohen, A., Dahmen, W., & DeVore, R. (2017). Orthogonal matching pursuit under the restricted isometry property. Constructive Approximation, 45(1), 113–127.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52, 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  • Donoho, D. L., & Kutyniok, G. (2013). Microlocal analysis of the geometric separation problem. Communications on Pure and Applied Mathematics, 66, 1–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Haupt, J., Bajwa, W. U., Raz, G., & Nowak, R. (2010). Toeplitz compressed sensing matrices with applications to sparse channel estimation. IEEE Transactions on Information Theory, 56(11), 5862–5875.

    Article  MathSciNet  MATH  Google Scholar 

  • King, E. J., Kutyniok, G., & Zhuang, X. (2011). Analysis of data separation and recovery problems using clustered sparsity. In SPIE proceedings: Wavelets and sparsity XIV, Vol. 8138

  • King, E. J., Kutyniok, G., & Zhuang, X. (2012). Analysis of inpainting via clustered sparsity and microlocal analysis. Journal of Mathematical Imaging and Vision, 48(2), 205–234.

    Article  MathSciNet  MATH  Google Scholar 

  • Krahmer, F., Mendelson, S., & Rauhut, H. (2014). Suprema of chaos processes and the restricted isometry property. Communications on Pure and Applied Mathematics, 67(11), 1877–1904.

    Article  MathSciNet  MATH  Google Scholar 

  • Kunis, S., & Rauhut, H. (2008). Random sampling of sparse trigonometric polynomials II-orthogonal matching pursuit versus basis pursuit. Foundations of Computational Mathematics, 8, 737–763.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, J. H., & Li, S. (2013). Nonuniform support recovery from noisy random measurements by orthogonal matching pursuit. Journal of Approximation Theory, 165, 20–40.

    Article  MathSciNet  MATH  Google Scholar 

  • Mendelson, S., Pajor, A., & Tomczak-Jaegermann, N. (2011). Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constructive Approximation, 28, 277–289.

    Article  MathSciNet  MATH  Google Scholar 

  • Mo, Q. (2015). A sharp restricted isometry constant bound of orthogonal matching pursuit. arXiv:1501.01708.

  • Mo, Q., & Shen, Y. (2012). A remark on the restricted isometry property in orthogonal matching pursuit. IEEE Transactions on Information Theory, 58(6), 3654–3656.

    Article  MathSciNet  MATH  Google Scholar 

  • Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Proceedings of 27th annual asilomar conference on signals, systems, and computers (Vol. 1, pp. 40–44). IEEE, Pacific Grove, CA.

  • Pereira, P. M., Lovisolo, L., da Silva, E. A. B., & De Campos, M. L. R. (2014). On the design of maximally incoherent sensing matrices for compressed sensing using orthogonal bases and its extension for biorthogonal bases case. Digital Signal Processing, 27, 12–22.

    Article  Google Scholar 

  • Rauhut, H. (2009). Circulant and Toeplitz matrices in compressed sensing. Mathematics. arXiv:0902.4394.

  • Romberg, J. (2008). Compressive sensing by random convolution. Siam Journal on Imaging Sciences, 2(4), 1098–1128.

    Article  MathSciNet  MATH  Google Scholar 

  • Shen, Y., & Li, S. (2015). Sparse signals recovery from noisy measurements by orthogonal matching pursuit. Inverse Problems and Imaging, 9(1), 231–238.

    Article  MathSciNet  MATH  Google Scholar 

  • Tropp, J. A. (2004). Greed is good: Algorithmic results for sparse approximation. IEEE Transactions on Information Theory, 50(10), 2231–2242.

    Article  MathSciNet  MATH  Google Scholar 

  • Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices. Foundations of Computational Mathematics, 12(4), 389–434.

    Article  MathSciNet  MATH  Google Scholar 

  • Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.

    Article  MathSciNet  MATH  Google Scholar 

  • Wen, J., Zhou, Z., Wang, J., Tang, X., & Mo, Q. (2017). A sharp condition for exact support recovery with orthogonal matching pursuit. IEEE Transactions on Signal Processing, 65(6), 1370–1382.

  • Xu, Z. (2012). A remark about orthogonal matching pursuit algorithm. Advances in Adaptive Data Analysis, 4(4), 1250026.

  • Zhang, T. (2011). Sparse recovery with orthogonal matching pursuit under RIP. IEEE Transactions on Information Theory, 57(9), 6215–6221.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is partially supported the NSF of China under Grant 11671358, the NSAF of China under Grant U1630116, the key project of NSF of China under Number 11531013. Ruifang Hu is also partially supported by the university visiting scholars program under Grant FX2017049. The authors are grateful to the editor and anonymous reviewers for their constructive suggestions and comments to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruifang Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Hu, R. Sparsity and incoherence in orthogonal matching pursuit. Multidim Syst Sign Process 30, 257–274 (2019). https://doi.org/10.1007/s11045-018-0554-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-018-0554-8

Keywords

Navigation