Liver function classification based on local direction number and non-local binary pattern | Multimedia Tools and Applications Skip to main content

Advertisement

Log in

Liver function classification based on local direction number and non-local binary pattern

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Liver function can be used to track secretion, excretion, synthesis, and reserve function. This research proposes a new method based on CT images to address the problem of current methods of liver function measurement being invasive and insufficiently. To begin, Gabor filters are employed to extract the multiscale texture features of the region of interest in CT image, and the principal directions of each scale are encoded in a compact numerical mode in order to extract more discriminative features. Second, to achieve a wide range of pixel relationships, the non-local binary mode is used. Finally, the support vector machine is used to classify features. Extensive experiments have shown that evaluating liver function using a CT image is both feasible and effective. The relationship between liver function grades and CT image is examined using the model for end stage liver disease (MELD) score. It provides non-invasive and more efficient image-based auxiliary diagnosis for liver function evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The code that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bourkache N, Laghrouch M, Sidhom S (2020) Gabor Filter Algorithm for medical image processing: evolution in Big Data context[C]. 2020 International Multi-Conference on: “Organization of Knowledge and Advanced Technologies” (OCTA)

  2. Buades A, Coll B, Morel JM (2005) A non local algorithm for image denoising. In: Proc IEEE CVPR, pp 60–65

  3. Devi RM, Seenivasagam V (2020) Automatic segmentation and classification of liver tumor from CT image using feature difference and SVM based classifier-soft computing technique[J]. Soft Comput 24(24):18591–18598

    Article  Google Scholar 

  4. Duan J (2016) SU-F-R-23: Texture feature analysis for assessment of liver cirrhosis and normal liver in CT image[J]. Med Phys 43(6):3378–3378

    Article  Google Scholar 

  5. Elkilany A, Geisel D, Müller T et al (2021) Gadoxetic acid-enhanced MRI in primary sclerosing cholangitis: added value in assessing liver function and monitoring disease progression[J]. Abdom Radiol 46(3):979–991

    Article  Google Scholar 

  6. Geetha R, Sivasubramanian S, Kaliappan M, Vimal S, Annamalai S (2019) Cervical cancer identification with synthetic minority oversampling technique and PCA analysis using random forest classifier[J]. J Med Syst 43(9):1–19

    Article  Google Scholar 

  7. Hosny KM, Magdy T, Lashin NA (2021) Improved color texture recognition using multi-channel orthogonal moments and local binary pattern[J]. Multimed Tools Appl 80(9):13179–13194

    Article  Google Scholar 

  8. Idrssi AE, Merabet YE, Ruichek Y (2020) Palmprint recognition using state-of-the-art local texture descriptors: a comparative study[J]. IET Biom 9(4):143–153

    Article  Google Scholar 

  9. Kamath PS, Kim WR (2007) The model for end-stage liver disease (MELD)[J]. Hepatology 45(3):797–805

    Article  Google Scholar 

  10. Karanwal S, Diwakar M (2020) OD-LBP: Orthogonal difference-local binary pattern for Face Recognition[J]. Digit Signal Proc 110(10):102948

    Google Scholar 

  11. Khalid M, Hosny T, Magdy NA, Lashin K, Apostolidis GA, Papakostas (2021) Refined color texture classification using CNN and local binary pattern. Math Probl Eng 2021, Article ID 5567489, 15 pages

  12. Kim R, Berg T, Asselah T et al (2015) Evaluation of APRI and FIB-4 scoring systems for non-invasive assessment of hepatic fibrosis in chronic hepatitis B patients[J]. J Hepatol 64(4):773–780

    Article  Google Scholar 

  13. Lee H, Lee H, Hong H, Bae H, Lim JS, Kim J (2021) Classification of focal liver lesions in CT images using convolutional neural networks with lesion information augmented patches and synthetic data augmentation[J]. Med Phys 48(9):5029–5046

    Article  Google Scholar 

  14. Leng L, Zhang S, Bi X et al (2012) Two-dimensional cancelable biometric scheme[C]. International Conference on Wavelet Analysis & Pattern Recognition. IEEE

  15. Leng L, Li M, Kim C et al (2017) Dual-source discrimination power analysis for multi-instance contactless palmprint recognition[J]. Multimed Tools Appl 76(1):333–354

    Article  Google Scholar 

  16. Li Z, Mao Y, Huang W et al (2017) Texture-based classification of different single liver lesion based on SPAIR T2W MRI images[J]. BMC Med Imaging 17(1):42–50

    Article  Google Scholar 

  17. Liu L, Lao S, Fieguth P et al (2016) Median robust extended local binary pattern for texture classification[J]. IEEE Trans Image Process 25(3):1368–1381

    Article  MathSciNet  Google Scholar 

  18. Liu Xiaohong Z, Yuquan L, Zhe et al (2019) Liver CT image feature extraction method based on improved multi-scale LBP algorithm[J]. Comput Sci 46(003):125–130

    Google Scholar 

  19. Lu L, Zhang J (2012) Palmhash Code forpalmprint verification and protection[C]. 2012 25th IEEE Canadian Conferenceon Electrical and Computer Engineering (CCECE). IEEE

  20. Mao B, Ma J, Duan S, Xia Y, Tao Y, Zhang L (2021) Preoperative classification of primary and metastatic liver cancer via machine learning-based ultrasound radiomics[J]. Eur Radiol 31(7):4576–4586

    Article  Google Scholar 

  21. Palmieri C, Macpherson IR (2021) A review of the evidence base for utilizing Child-Pugh criteria for guiding dosing of anticancer drugs in patients with cancer and liver impairment[J]. ESMO Open 6(3):100162

    Article  Google Scholar 

  22. Porebski A, Hoang VT, Vandenbroucke N et al (2020) Combination of LBP bin and histogram selections for color texture classification[J]. J Imaging 6(6):53

    Article  Google Scholar 

  23. Ramirez Rivera A, Rojas Castillo J, Oksam Chae O (2013) Local directional number pattern for face analysis: face and expression recognition[J]. IEEE Trans Image Process 22(5):1740–1752

    Article  MathSciNet  Google Scholar 

  24. Shankar K, Lakshmanaprabu SK, Gupta D et al (2020) Optimal feature-based multi-kernel SVM approach for thyroid disease classification[J]. J Supercomput 76(28):1–16

    Google Scholar 

  25. Sharma S, Ghanekar U (2019) Spliced image classification and tampered region localization using local directional pattern[J]. Int J Image Graph Signal Process 11(3):35–42

    Article  Google Scholar 

  26. Siddiqi AA, Khawaja A, Hashmi A (2020) Classification of abdominal CT images bearing liver tumor using structural similarity index and support vector machine[J]. Mehran Univ Res J Eng Technol 39(4):751–758

    Article  Google Scholar 

  27. Song T, Feng J, Luo L et al (2020) Robust texture description using local grouped order pattern and non-local binary pattern[J]. IEEE Trans Circuits Syst Video Technol PP(99):1–1

    Google Scholar 

  28. Uddin MP, Mamun MA, Hossain MA (2021) PCA-based feature reduction for hyperspectral remote sensing image classification[J]. IETE Tech Rev 38(4):377–396

    Article  Google Scholar 

  29. Wang M, Fu F, Zheng B, Bai Y, Wu Q, Wu J, Tian F (2021) Development of an AI system for accurately diagnose hepatocellular carcinoma from computed tomography imaging data[J]. Br J Cancer 125(8):1111–1121

    Article  Google Scholar 

  30. Yang H, Gong C, Huang K et al (2021) Weighted feature histogram of multi-scale local patch using multi-bit binary descriptor for face recognition[J]. IEEE Trans Image Process PP(99):1–1

    MathSciNet  Google Scholar 

  31. Yang Baoqing Z, Tao Gu, Chaochen et al (2016) A novel face recognition method based on IWLD and IWBC[J]. Multimed Tools Appl 75(12):6979

    Article  Google Scholar 

  32. Yip SSF, Aerts HJWL (2016) Applications and limitations of radiomics[J]. Phys Med Biol 61(13):R150–R166

    Article  Google Scholar 

  33. Zaydfudim VM, Turrentine FE, Smolkin ME, Bauer TB, Adams RB, McMurry TL (2020) The impact of cirrhosis and MELD score on postoperative morbidity and mortality among patients selected for liver resection[J]. Am J Surg 220(3):682–686

    Article  Google Scholar 

  34. Zhang WC, Shan S, Gao W et al (2005) Local Gabor binary pattern histogram sequence (LGBPHS): A novel non-statistical model for face representation and recognition[J]. Tenth IEEE International Conference on Computer Vision, 786–791

  35. Zhao H, Tang M, Ding H (2020) HoPPF: A novel local surface descriptor for 3D object recognition[J]. Pattern Recogn 103:107272

    Article  Google Scholar 

  36. Zollanvari A, Abibullaev B (2021) Bias correction for linear discriminant analysis[J]. Pattern Recognit Lett 151:41–47

    Article  Google Scholar 

Download references

Funding

This work was part of a project funded by “The National Natural Science Foundation of China” (Grant No. 61901195).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyan Zhang.

Ethics declarations

Conflicts of interest/Competing interests

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Yang, W., Zhang, Z. et al. Liver function classification based on local direction number and non-local binary pattern. Multimed Tools Appl 81, 32305–32322 (2022). https://doi.org/10.1007/s11042-022-12986-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12986-x

Keywords

Navigation