Noncoercive Variational–Hemivariational Inequalities: Existence, Approximation by Double Regularization, and Application to Nonmonotone Contact Problems | Journal of Optimization Theory and Applications
Skip to main content

Noncoercive Variational–Hemivariational Inequalities: Existence, Approximation by Double Regularization, and Application to Nonmonotone Contact Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study noncoercive nonlinear variational–hemivariational inequalities that encompass semicoercive nonlinear monotone variational inequalities and pseudomonotone variational inequalities in reflexive Banach spaces, respectively, hemivariational inequalities in function spaces. We present existence and approximation results. Our approach consists in a double regularization: we combine a Browder–Tikhonov regularization with regularization tools of nondifferentiable optimization to smooth the jumps in the hemivariational term. As application, we treat a noncoercive unilateral contact problem in continuum mechanics with nonmonotone friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availability Statement

Not applicable, our manuscript has no associated data.

References

  1. Adams, R.A., Fournier, J.F.F.: Sobolev Spaces, 2nd edn. Elsevier/Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Adly, S.: Stability of linear semi-coercive variational inequalities in Hilbert spaces: application to the Signorini–Fichera problem. J. Nonlinear Convex Anal. 7, 325–334 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Adly, S., Goeleven, D., Théra, M.: Recession mappings and noncoercive variational inequalities. Nonlinear Anal. 26, 1573–1603 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alber, Y., Ryazantseva, I.: Nonlinear Ill-posed Problems of Monotone Type. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  5. Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. MPS-SIAM Series on Optimization, SIAM, Philadelphia (2006)

    MATH  Google Scholar 

  6. Barboteu, M., Han, W., Migórski, S.: On numerical approximation of a variational-hemivariational inequality modeling contact problems for locking materials. Comput. Math. Appl. 77, 2894–2905 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Student 63, 123–145 (1994)

    MathSciNet  MATH  Google Scholar 

  8. Brézis, H.: Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier 18, 115–175 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brézis, H., Nirenberg, L.: Characterizations of the ranges of some nonlinear operators and applications to boundary value problems. Ann. Scuola Norm. Sup. Pisa 4, 225–326 (1978)

    MathSciNet  MATH  Google Scholar 

  10. Carl, S., Le, Vy. K., Motreanu, D.: Nonsmooth Variational Problems and Their Inequalities: Comparison Principles and Applications. Springer, New York (2007)

    Book  MATH  Google Scholar 

  11. Chadli, O., Chbani, Z., Riahi, H.: Some existence results for coercive and noncoercive hemivariational inequalities. Appl. Anal. 69, 125–131 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chadli, O., Chbani, Z., Riahi, H.: Recession methods for equilibrium problems and applications to variational and hemivariational inequalities. Discrete Contin. Dynam. Systems 5, 185–196 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chadli, O., Schaible, S., Yao, J.C.: Regularized equilibrium problems with application to noncoercive hemivariational inequalities. J. Optim. Theory Appl. 121, 571–596 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chadli, O., Liu, Z., Yao, J.C.: Applications of equilibrium problems to a class of noncoercive variational inequalities. J. Optim. Theory Appl. 132, 89–110 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chadli, O., Ansari, Q.H., Yao, J.C.: Mixed equilibrium problems and anti-periodic solutions for nonlinear evolution equations. J. Optim. Theory Appl. 168, 410–440 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

  17. Cioranescu, I.: Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems. Kluwer, Dordrecht (1990)

    Book  MATH  Google Scholar 

  18. Clarke, F.: Optimization and Nonsmooth Analysis. John Wiley, New York (1983)

    MATH  Google Scholar 

  19. Costea, N., Matei, A.: Contact models leading to variational-hemivariational inequalities. J. Math. Anal. Appl. 386, 647–660 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dao, M.N., Gwinner, J., Noll, D., Ovcharova, N.: Nonconvex bundle method with application to a delamination problem. Comput. Optim. Appl. 65, 173–203 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Eck, C., Jarušek, J., Krbec, M.: Unilateral Contact Problems. Chapman & Hall/CRC, Boca Raton, FL (2005)

    Book  MATH  Google Scholar 

  22. Giannessi, F., Khan, A.A.: Regularization of non-coercive quasi variational inequalities. Control Cybernet. 29, 91–110 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Glowinski, R.: Numerical Methods for Nonlinear Variational Problems, Reprint of the 1984 Original. Springer, Berlin (2008)

    Google Scholar 

  24. Goeleven, D.: On Noncoercive Variational Problems and Related Results, Pitman Research Notes in Mathematics Series 357. Longman, Harlow (1996)

    Google Scholar 

  25. Goeleven, D., Motreanu, D., Dumont, Y., Rochdi, M.: Variational and Hemivariational Inequalities: Theory, Methods and Applications, Vol. Unilateral Problems, Kluwer, Dordrecht, II (2003)

  26. Goeleven, D., Théra, M.: Semicoercive variational hemivariational inequalities. J. Global Optim. 6, 367–381 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gwinner, J.: Nichtlineare Variationsungleichungen mit Anwendungen. PhD Thesis, Universität Mannheim (1978)

  28. Gwinner, J.: Discretization theory for monotone semicoercive problems and finite element convergence for p-harmonic Signorini problems. ZAMM - J. Appl. Math. Mech. 74, 417–427 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gwinner, J.: Discretization of semicoercive variational inequalities. Aequationes Math. 42, 72–79 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gwinner, J.: A note on pseudomonotone functions, regularization, and relaxed coerciveness. Nonlinear Anal. 30, 4217–4227 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gwinner, J.: \(hp\)-FEM convergence for unilateral contact problems with Tresca friction in plane linear elastostatics. J. Comput. Appl. Math. 254, 175–184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gwinner, J., Ovcharova, N.: From solvability and approximation of variational inequalities to solution of nondifferentiable optimization problems in contact mechanics. Optimization 64, 1683–1702 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gwinner, J., Ovcharova, N.: Semicoercive variational inequalities: from existence to numerical solution of nonmonotone contact problems. J. Optim. Theory Appl. 171, 422–439 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gwinner, J., Ovcharova, N.: A Gårding inequality based unified approach to various classes of semi-coercive variational inequalities applied to non-monotone contact problems with a nested max-min superpotential. Minimax Theory Appl. 5, 103–128 (2020)

    MathSciNet  MATH  Google Scholar 

  35. Hintermüller, M., Kovtunenko, V.A., Kunisch, K.: Obstacle problems with cohesion: a hemivariational inequality approach and its efficient numerical solution. SIAM J. Optim. 21, 491–516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Hlavaček, I., Haslinger, J., Nečas, J., Lovišek, I.: Solution of Variational Inequalities in Mechanics. Springer, Berlin (1988)

    Book  MATH  Google Scholar 

  37. Jeggle, H.: Nichtlineare Funktionalanalysis. Teubner, Stuttgart (1979)

    Book  MATH  Google Scholar 

  38. Khan, A.A.: A regularization approach for variational inequalities. Comput. Math. Appl. 42, 65–74 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lahmdani, A., Chadli, O., Yao, J.C.: Existence of solutions for noncoercive hemivariational inequalities by an equilibrium approach under pseudomonotone perturbation. J. Optim. Theory Appl. 160, 49–66 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lindqvist, P.: Notes on the stationary \(p\)-Laplace equation. Springer Briefs in Mathematics, Springer, Cham (2019)

    Book  MATH  Google Scholar 

  41. Liu, F., Nashed, M.Z.: Tikhonov regularization of nonlinear ill-posed problems with closed operators in Hilbert scales. J. Inverse Ill-Posed Probl. 5, 363–376 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, F., Nashed, M.Z.: Regularization of nonlinear ill-posed variational inequalities and convergence rates. Set-Valued Anal. 6, 313–344 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, Z.: Elliptic variational hemivariational inequalities. Appl. Math. Lett. 16, 871–876 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, Z.: Browder–Tikhonov regularization of non-coercive evolution hemivariational inequalities. Inverse Problems 21, 13–20 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Maugeri, A., Raciti, F.: On existence theorems for monotone and nonmonotone variational inequalities. J. Convex Anal. 16, 899–911 (2009)

    MathSciNet  MATH  Google Scholar 

  46. Migórski, S., Ochal, A., Sofonea, M.: Nonlinear Inclusions and Hemivariational Inequalities: Models and Analysis of Contact Problems. Springer, New York (2013)

    Book  MATH  Google Scholar 

  47. Migórski, S., Ogorzały, J.: A variational-hemivariational inequality in contact problem for locking materials and nonmonotone slip dependent friction. Acta Math. Sci. 37, 1639–1652 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Naniewicz, Z.: Semicoercive variational-hemivariational inequalities with unilateral growth conditions. J. Global Optim. 17, 317–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  49. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Applications. Marcel Dekker, New York (1995)

    MATH  Google Scholar 

  50. Nashed, M.Z., Liu, F.: On nonlinear ill-posed problems II: Monotone operator equations and monotone variational inequalities. In: Theory and Applications of Nonlinear Operators of Accretive and Monotone Types. Lecture Notes in Pure and Applied Mathematics, vol. 177, pp. 223–240. Marcel Dekker, New York (1998)

  51. Nashed, M.Z., Scherzer, O.: Least squares and bounded variation regularization with nondifferentiable functionals. Numer. Funct. Anal. Optimiz. 19, 873–901 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. Nashed, M.Z.; Scherzer, O.: Stable approximations of nondifferentiable optimization problems with variational inequalities. In: Recent Developments in Optimization Theory and Nonlinear Analysis, Contemp. Math., vol. 23, pp. 155–170. American Mathematical Society, Providence, RI (1991)

  53. Nesemann, L., Stephan, E.P.: Numerical solution of an adhesion problem with FEM and BEM. Appl. Numer. Math. 62, 606–619 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Ovcharova, N., Gwinner, J.: On the discretization of pseudomonotone variational inequalities with an application to the numerical solution of the nonmonotone delamination problem. In: Rassias, T., Floudas, C., Butenko, S. (eds.) Optimization in Science and Engineering, pp. 393–405. Springer, New York (2014)

    Chapter  MATH  Google Scholar 

  55. Ovcharova, N., Gwinner, J.: A study of regularization techniques of nondifferentiable optimization in view of application to hemivariational inequalities. J. Optim. Theory Appl. 162, 754–778 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Panagiotopoulos, P.D.: Hemivariational Inequalities. Applications in Mechanics and Engineering, Springer, Berlin (1993)

    Book  MATH  Google Scholar 

  57. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Application. Convex and Nonconvex Energy Functions, Birkhäuser, Basel (1998)

    Google Scholar 

  58. Sofonea, M., Matei, A.: Mathematical Models in Contact Mechanics, London Mathematical Society Lecture Note Series, vol. 398. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  59. Tomarelli, F.: Noncoercive variational inequalities for pseudomonotone operators. Rend. Sem. Mat. Fis. Milano 61(1991), 141–183 (1994)

    MathSciNet  MATH  Google Scholar 

  60. Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/B Nonlinear Monotone Operators. Translated by the Author and by Leo F. Boron. Springer, New York (1990)

Download references

Acknowledgements

The authors would like to thank the anonymous referees whose insightful comments have benefited the contents of this article.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Gwinner.

Additional information

Communicated by Jan Sokolowski.

Dedicated to Professor Franco Giannessi on the occasion of his 85th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chadli, O., Gwinner, J. & Nashed, M.Z. Noncoercive Variational–Hemivariational Inequalities: Existence, Approximation by Double Regularization, and Application to Nonmonotone Contact Problems. J Optim Theory Appl 193, 42–65 (2022). https://doi.org/10.1007/s10957-022-02006-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-022-02006-1

Keywords

Mathematics Subject Classification