Optimal Controls of Systems Governed by Semilinear Fractional Differential Equations with Not Instantaneous Impulses | Journal of Optimization Theory and Applications Skip to main content
Log in

Optimal Controls of Systems Governed by Semilinear Fractional Differential Equations with Not Instantaneous Impulses

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

This paper is concerned on optimal control problems for systems governed semilinear fractional differential equations with not instantaneous impulses in the infinite dimensional spaces. We utilize fractional calculus, semigroup theory and fixed point approach to present the solvability of the corresponding control system by using the new introduced concept of mild solutions. Next, we give the existence result of optimal controls for Lagrange problem under the suitable conditions. Finally, an example is given to illustrate the effectiveness of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  2. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2012)

    Book  Google Scholar 

  4. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  5. Tarasov, V.E.: Fractional Dynamics: Application of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, New York (2011)

    Google Scholar 

  6. Diethelm, K.: The Analysis of Fractional Differential Equations. Lecture Notes in Mathematics. Springer, New York (2010)

    Book  MATH  Google Scholar 

  7. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  8. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  9. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  10. Zhou, Y.: Fractional Evolution Equations and Inclusions: Analysis and Control. Academic Press, New York (2016)

    MATH  Google Scholar 

  11. Hernández, E., O’Regan, D.: On a new class of abstract impulsive differential equations. Proc. Am. Math. Soc. 141, 1641–1649 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pierri, M., O’Regan, D., Rolnik, V.: Existence of solutions for semi-linear abstract differential equations with not instantaneous impulses. Appl. Math. Comput. 219, 6743–6749 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Fečkan, M., Wang, J., Zhou, Y.: Existence of periodic solutions for nonlinear evolution equations with non-instantaneous impulses. Nonauton. Dyn. Syst. 1, 93–101 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Wang, J., Fečkan, M.: A general class of impulsive evolution equations. Topol. Methods Nonlinear Anal. 46, 915–934 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Balder, E.: Necessary and sufficient conditions for \(L^1\)-strong–weak lower semicontinuity of integral functional. Nonlinear Anal. Theory Methods Appl. 11, 1399–1404 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang, J., Fečkan, M., Zhou, Y.: A survey on impulsive fractional differential equations. Fract. Calc. Appl. Anal. 19, 806–831 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fečkan, M., Zhou, Y., Wang, J.: Response to ”Comments on the concept of existence of solution for impulsive fractional differential equations [Commun Nonlinear Sci Numer Simul 2014; 19:401–3.]”. Commun. Nonlinear Sci. Numer. Simul. 19, 4213–4215 (2014)

    Article  MathSciNet  Google Scholar 

  18. Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal. Real World Appl. 12, 262–272 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, Berlin (1983)

    Book  MATH  Google Scholar 

  21. Wang, J., Feckan, M., Zhou, Y.: Relaxed controls for nonlinear fractional impulsive evolution equations. J. Optim. Theory Appl. 156, 13–32 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wei, W., Xiang, X., Peng, Y.: Nonlinear impulsive integro-differential equations of mixed type and optimal controls. Optim. J. Math. Program. Oper. Res. 55, 141–156 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Courier Corporation, North Chelmsford (2012)

    MATH  Google Scholar 

  24. Babiarz, A., Klamka, J., Niezabitowski, M.: Schauder’s fixed-point theorem in approximate controllability problems. Int. J. Appl. Math. Comput. Sci. 26, 263–275 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Klamka, J., Babiarz, A., Niezabitowski, M.: Banach fixed-point theorem in semilinear controllability problems—a survey. Bull. Pol. Acad. Sci. Tech. Sci. 64, 21–35 (2016)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referees for their careful reading of the manuscript and insightful comments. This work is supported by National Natural Science Foundation of China (11661016), Training Object of High Level and Innovative Talents of Guizhou Province ((2016)4006), Unite Foundation of Guizhou Province ([2015]7640), and Graduate ZDKC([2015]003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JinRong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, J. Optimal Controls of Systems Governed by Semilinear Fractional Differential Equations with Not Instantaneous Impulses. J Optim Theory Appl 174, 455–473 (2017). https://doi.org/10.1007/s10957-017-1122-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-017-1122-3

Keywords

Mathematics Subject Classification

Navigation