Predicting Absenteeism and Temporary Disability Using Machine Learning: a Systematic Review and Analysis | Journal of Medical Systems
Skip to main content

Advertisement

Predicting Absenteeism and Temporary Disability Using Machine Learning: a Systematic Review and Analysis

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The main objective of this paper is to present a systematic analysis and review of the state of the art regarding the prediction of absenteeism and temporary incapacity using machine learning techniques. Moreover, the main contribution of this research is to reveal the most successful prediction models available in the literature. A systematic review of research papers published from 2010 to the present, related to the prediction of temporary disability and absenteeism in available in different research databases, is presented in this paper. The review focuses primarily on scientific databases such as Google Scholar, Science Direct, IEEE Xplore, Web of Science, and ResearchGate. A total of 58 articles were obtained from which, after removing duplicates and applying the search criteria, 18 have been included in the review. In total, 44% of the articles were published in 2019, representing a significant growth in scientific work regarding these indicators. This study also evidenced the interest of several countries. In addition, 56% of the articles were found to base their study on regression methods, 33% in classification, and 11% in grouping. After this systematic review, the efficiency and usefulness of artificial neural networks in predicting absenteeism and temporary incapacity are demonstrated. The studies regarding absenteeism and temporary disability at work are mainly conducted in Brazil and India, which are responsible for 44% of the analyzed papers followed by Saudi Arabia, and Australia which represented 22%. ANNs are the most used method in both classification and regression models representing 83% and 80% of the analyzed works, respectively. Only 10% of the literature use SVM, which is the less used method in regression models. Moreover, Naïve Bayes is the less used method in classification models representing 17%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ferreira, R., Martiniano, A., Domingos, N., Farias, E., and Sassi, R., Artificial neural network and their application in the prediction of absenteeism at work. Int. J. Recent Sci. Res. 9: 23332–23334, 2018. https://doi.org/10.24327/ijrsr.2018.0901.1447.

    Article  Google Scholar 

  2. Da Silva, I. N., Spatti, D. H., Flauzino, R. A., Liboni, L. H. B., and dos Reis Alves, S. F., Artificial neural networks. Cham Springer Int. Publ. 39, 2017.

  3. Darvishi, E., Khotanlou, H., Khoubi, J., Giahi, O., and Mahdavi, N., Prediction effects of personal, psychosocial, and occupational risk factors on low back pain severity using artificial neural networks approach in industrial workers. J. Manipulative Physiol. Ther. 40: 486–493, 2017. https://doi.org/10.1016/j.jmpt.2017.03.012.

    Article  PubMed  Google Scholar 

  4. Hassoun, M. H., Fundamentals of artificial neural networks: MIT Press, 1995.

  5. Tkáč, M., and Verner, R., Artificial neural networks in business: Two decades of research. Appl. Soft Comput. 38: 788–804, 2016.

    Article  Google Scholar 

  6. Ansari, A., and Riasi, A., Modelling and evaluating customer loyalty using neural networks: evidence from startup insurance companies. Future Bus. J. 2: 15–30, 2016. https://doi.org/10.1016/j.fbj.2016.04.001.

    Article  Google Scholar 

  7. He, X., Ke, L., Lu, W., Yan, G., and Zhang, X., AxTrain: hardware-oriented neural network training for approximate inference. In: Proceedings of the International Symposium on Low Power Electronics and Design, pp. 1–6, 2018.

  8. Fang, M. Y.-S., Manipatruni, S., Wierzynski, C., Khosrowshahi, A., and DeWeese, M. R.: Design of optical neural networks with component imprecisions. Opt. Express. 27: 14009–14029, 2019.

    Article  CAS  Google Scholar 

  9. Wan, Z., Gong, M., and Jiang, F., An estimation framework for economic cost of land use based on artificial neural networks and principal component analysis with R. In: 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), pp. 204–209. IEEE, 2019.

  10. Wang, X.-L., Cao, J.-B., Li, D.-D., Guo, D.-X., Zhang, C.-D., Wang, X., Li, D.-K., Zhao, Q.-L., Huang, X.-W., and Zhang, W.-D.: Management of imported malaria cases and healthcare institutions in central China, 2012–2017: application of decision tree analysis. Malar. J. 18: 429, 2019. https://doi.org/10.1186/s12936-019-3065-7.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaur, M., Gianey, H. K., and Singh, D., Sabharwal, M.: Multi-objective differential evolution based random forest for e-health applications. Mod. Phys. Lett. B. 33: 1950022, 2019. https://doi.org/10.1142/S0217984919500222.

    Article  CAS  Google Scholar 

  12. Gao, H., Zeng, X., and Yao, C., Application of improved distributed naive Bayesian algorithms in text classification. J. Supercomput. 75: 5831–5847, 2019. https://doi.org/10.1007/s11227-019-02862-1.

    Article  Google Scholar 

  13. Sarmadi, H., and Karamodin, A., A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects. Mech. Syst. Signal Process. 140: 106495, 2020. https://doi.org/10.1016/j.ymssp.2019.106495.

    Article  Google Scholar 

  14. Harimoorthy, K., and Thangavelu, M., Multi-disease prediction model using improved SVM-radial bias technique in healthcare monitoring system. J. Ambient Intell. Humaniz. Comput., 2020. https://doi.org/10.1007/s12652-019-01652-0.

  15. Li, H., Zhang, Z., and Liu, Z., Application of artificial neural networks for catalysis: a review. Catalysts. 7: 306, 2017. https://doi.org/10.3390/catal7100306.

    Article  CAS  Google Scholar 

  16. Ghaedi, A.M., and Vafaei, A., Applications of artificial neural networks for adsorption removal of dyes from aqueous solution: a review. Adv. Colloid Interface Sci. 245: 20–39, 2017. https://doi.org/10.1016/j.cis.2017.04.015.

    Article  CAS  PubMed  Google Scholar 

  17. Ngiam, K. Y., and Khor, I. W., Big data and machine learning algorithms for healthcare delivery. Lancet Oncol. 20: e262–e273, 2019. https://doi.org/10.1016/S1470-2045(19)30149-4.

    Article  PubMed  Google Scholar 

  18. Triantafyllidis, A. K., and Tsanas, A., Applications of machine learning in real-life digital health interventions: review of the literature. J. Med. Internet Res. 21: e12286 , 2019. https://doi.org/10.2196/12286.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Treviño, L. K., Butterfield, K. D., and McCabe, D. L., The ethical context in organizations: influences on employee attitudes and behaviors. Bus. Ethics Q. 8: 447–476, 1998. https://doi.org/10.2307/3857431.

    Article  Google Scholar 

  20. Ugboro, I. O., and Obeng, K., Top management leadership, employee empowerment, job satisfaction, and customer satisfaction in TQM organizations: an empirical study. J. Qual. Manag. 5: 247–272, 2000. https://doi.org/10.1016/S1084-8568(01)00023-2.

    Article  Google Scholar 

  21. Hon, A. H. Y., and Lui, S. S., Employee creativity and innovation in organizations: Review, integration, and future directions for hospitality research. Int. J. Contemp. Hosp. Manag. 28: 862–885, 2016. https://doi.org/10.1108/IJCHM-09-2014-0454.

    Article  Google Scholar 

  22. Audenaert, M., Decramer, A., George, B., Verschuere, B., and Waeyenberg, T. V.: When employee performance management affects individual innovation in public organizations: the role of consistency and LMX. Int. J. Hum. Resour. Manag. 30: 815–834, 2019. https://doi.org/10.1080/09585192.2016.1239220.

    Article  Google Scholar 

  23. Hassan, S., DeHart-Davis, L., and Jiang, Z., How empowering leadership reduces employee silence in public organizations. Public Adm. 97: 116–131, 2019. https://doi.org/10.1111/padm.12571.

    Article  Google Scholar 

  24. Deery, S., Walsh, J., Zatzick, C. D., and Hayes, A. F., Exploring the relationship between compressed work hours satisfaction and absenteeism in front-line service work. Eur. J. Work Organ. Psychol. 26: 42–52, 2017. https://doi.org/10.1080/1359432X.2016.1197907.

    Article  Google Scholar 

  25. Strömberg, C., Aboagye, E., Hagberg, J., Bergström, G., and Lohela-Karlsson, M., Estimating the effect and economic impact of absenteeism, presenteeism, and work environment–related problems on reductions in productivity from a managerial perspective. Value Health. 20: 1058–1064, 2017. https://doi.org/10.1016/j.jval.2017.05.008.

    Article  PubMed  Google Scholar 

  26. Appraisal of economic crisis, psychological distress, and work-unit absenteeism: a 1-1-2 model | SpringerLink, https://link.springer.com/article/10.1007/s10869-019-09643-w, last accessed 2020/03/22.

  27. How job demands affect absenteeism? The mediating role of work–family conflict and exhaustion | SpringerLink, https://link.springer.com/article/10.1007/s00420-015-1048-8, last accessed 2020/03/22.

  28. Parental work absenteeism is associated with increased symptom complaints and school absence in adolescent children | SpringerLink, https://link.springer.com/article/10.1186/s12889-017-4368-7, last accessed 2020/03/22.

  29. Ali Shah, S. A., Uddin, I., Aziz, F., Ahmad, S., Al-Khasawneh, M. A., and Sharaf, M., An enhanced deep neural network for predicting workplace absenteeism. Complexity. 2020, 2020.

  30. Evans-Lacko, S., and Knapp, M., Global patterns of workplace productivity for people with depression: absenteeism and presenteeism costs across eight diverse countries. Soc. Psychiatry Psychiatr. Epidemiol. 51: 1525–1537, 2016. https://doi.org/10.1007/s00127-016-1278-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, W., Sun, H., Woodcock, S., and Anis, A. H.: Valuing productivity loss due to absenteeism: firm-level evidence from a Canadian linked employer-employee survey. Health Econ. Rev. 7: 3, 2017. https://doi.org/10.1186/s13561-016-0138-y.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Grinza, E., and Rycx, F., The impact of sickness absenteeism on firm productivity: new evidence from Belgian matched employer–employee panel data. Ind. Relat. J. Econ. Soc. 59: 150–194, 2020. https://doi.org/10.1111/irel.12252.

    Article  Google Scholar 

  33. Uribe, J. M., Pinto, D. M., Vecino-Ortiz, A. I., Gómez-Restrepo, C., and Rondón, M., Presenteeism, absenteeism, and lost work productivity among depressive patients from five cities of Colombia. Value Health Reg. Issues. 14: 15–19, 2017. https://doi.org/10.1016/j.vhri.2017.03.001.

    Article  PubMed  Google Scholar 

  34. Kocakulah, M. C., Kelley, A. G., Mitchell, K. M., and Ruggieri, M. P., Absenteeism problems and costs: causes, effects and cures. Int. Bus. Econ. Res. J. IBER. 15: 89–96, 2016. https://doi.org/10.19030/iber.v15i3.9673.

    Article  Google Scholar 

  35. Dyrbye, L. N., Shanafelt, T. D., Johnson, P. O., Johnson, L. A., Satele, D., and West, C. P.: A cross-sectional study exploring the relationship between burnout, absenteeism, and job performance among American nurses. BMC Nurs. 18: 57, 2019. https://doi.org/10.1186/s12912-019-0382-7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Fevang, E., Hardoy, I., and Røed, K., Temporary disability and economic incentives. Econ. J. 127: 1410–1432, 2017. https://doi.org/10.1111/ecoj.12345.

    Article  Google Scholar 

  37. Ward, B., Myers, A., Wong, J., and Ravesloot, C., Disability items from the current population survey (2008–2015) and permanent versus temporary disability status. Am. J. Public Health. 107: 706–708, 2017. https://doi.org/10.2105/AJPH.2017.303666.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sapp, J. E., Cody, M. J., and Douglas, K. M., Changes in temporary disability reporting following the implementation of the army medical readiness transformation. Mil. Med. 183: e179–e183, 2018. https://doi.org/10.1093/milmed/usx120.

    Article  PubMed  Google Scholar 

  39. Ayuso, M., Bermúdez, L., and Santolino, M., Copula-based regression modeling of bivariate severity of temporary disability and permanent motor injuries. Accid. Anal. Prev. 89: 142–150, 2016. https://doi.org/10.1016/j.aap.2016.01.008.

    Article  PubMed  Google Scholar 

  40. López, J. C., Ballesteros, M., and Sampere, M., Gestión del Absentismo: Incapacidad temporal por contingencia común. Introducción e Indicadores.

  41. Zschucke, E., Hessel, A., and Lippke, S., Temporary Disability Pension from the Perspective of the Individual: Self-Reported Physical and Mental Health, Medical Rehabilitation, and Return to Work Plans. Rehabil. 55, 223–229 (2016). https://doi.org/10.1055/s-0042-109574.

    Article  CAS  Google Scholar 

  42. Ramirez, A. A., La incapacidad temporal para el trabajo : análisis económico de su incidencia y su duración, 2019.

  43. E, K., O, S., B, H., M, K., O, R., [Return to Work after Temporary Disability Pension]. Gesundheitswesen Bundesverb. Arzte Offentlichen Gesundheitsdienstes Ger, 2019. https://doi.org/10.1055/a-0883-5276.

  44. Shahid, N., Rappon, T., and Berta, W., Applications of artificial neural networks in health care organizational decision-making: a scoping review. PLOS ONE. 14: e0212356, 2019. https://doi.org/10.1371/journal.pone.0212356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Walczak, S., and Velanovich, V., Improving prognosis and reducing decision regret for pancreatic cancer treatment using artificial neural networks. Decis. Support Syst. 106: 110–118, 2018. https://doi.org/10.1016/j.dss.2017.12.007.

    Article  Google Scholar 

  46. Bertolaccini, L., Solli, P., Pardolesi, A., and Pasini, A., An overview of the use of artificial neural networks in lung cancer research. J. Thorac. Dis. 9: 924–931, 2017. https://doi.org/10.21037/jtd.2017.03.157.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Boas Dias, B. V., The main causes of absenteeism disease among nursing professionals - an integrative literature review. Biomed. J. Sci. Tech. Res. 16, 2019. https://doi.org/10.26717/BJSTR.2019.16.002888.

  48. Varalakshmi, R., and Dhivya, R.S., A survey on big data applicability in prediction using absence information for workforce management. Int. J. Recent Technol. Eng. (IJRTE). 7: 97–100, 2019.

    Google Scholar 

  49. Moher, D., Liberati, A., Tetzlaff, J., and Altman, D. G., Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151: 264–269, 2009.

    Article  Google Scholar 

  50. González, D. S., and López, R. R., El control del gasto público por incapacidad temporal mediante redes neuronales. Hacienda Pública Esp. Econ. Pública. 53–78, 2003.

  51. Tondukulam Seeth, S., Forecasting of sick leave usage among nurses via artificial neural networks, 2010.

  52. Dogruyol, K., and Sekeroglu, B., Absenteeism prediction: a comparative study using machine learning models. In: International Conference on Theory and Application of Soft Computing, Computing with Words and Perceptions, pp. 728–734; Springer, 2019.

  53. Silva Júnior, E. L. da, Predição do absenteísmo em agentes de segurança pública usando aprendizagem profunda, 2019.

  54. Martiniano, A., Ferreira, R.P., Sassi, R. J., and Affonso, C., Application of a neuro fuzzy network in prediction of absenteeism at work. In: 7th Iberian Conference on Information Systems and Technologies (CISTI 2012), pp. 1–4: IEEE, 2012.

  55. Adaekalavan, S., Enhancing the prediction of absenteeism by decision cluster based rule generation. Int. J. Comput. Sci. Eng. 7: 326–330, 2019. https://doi.org/10.26438/ijcse/v7i5.326330.

    Article  Google Scholar 

  56. Iida, T., Predicting task completion duration at work using deep NN, effects of pruning with badness.

  57. Trivedi, H., Explaining Absenteeism at Workplace Predicted by a Neural Network: Springer, Berlin, Germany, 2010.

    Google Scholar 

  58. Gayathri, T., Data mining of absentee data to increase productivity. Int. J. Eng. Tech. 4: 478–480, 2018.

    Google Scholar 

  59. Wahid, Z., Satter, A. K. M. Z., Al Imran, A., and Bhuiyan, T., Predicting absenteeism at work using tree-based learners. In: Proceedings of the 3rd International Conference on Machine Learning and Soft Computing - ICMLSC 2019, pp. 7–11: ACM Press, Da Lat, Viet Nam, 2019. https://doi.org/10.1145/3310986.3310994.

  60. Asiri, A., and Abdullah, M., Employees absenteeism factors based on data analysis and classification. Biosci. Biotechnol. Res. Commun. 12: 119–127, 2019. https://doi.org/10.21786/bbrc/12.1/14.

    Article  Google Scholar 

  61. Araujo, V. S., Rezende, T. S., Guimarães, A. J., Araujo, V. J. S., and de Campos Souza, P. V., A hybrid approach of intelligent systems to help predict absenteeism at work in companies. SN Appl. Sci. 1, 536 (2019). https://doi.org/10.1007/s42452-019-0536-y.

    Article  Google Scholar 

  62. Priyanka, D., and Nayak, J., Empirical analysis of absenteeism at work place using machine learning. In: International Conference on Application of Robotics in Industry using Advanced Mechanisms, pp. 150–160: Springer, 2019.

  63. Olawale, O., Exploration of absenteeism with machine learning, https://medium.com/@ojoolawalejulius2016/exploration-of-absenteeism-with-machine-learning-1f01a8f9357e, last accessed 2020/03/21.

Download references

Acknowledgments

This research has been partially supported by ATAM - Asociacion Telefonica Para Asistencia A Minusvalidos (https://atam.es/) under the project named “Revisión y mejora de un sistema predictivo inteligente de duración de bajas laborables basado en redes neuronales”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel de la Torre Díez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montano, I.H., Marques, G., Alonso, S.G. et al. Predicting Absenteeism and Temporary Disability Using Machine Learning: a Systematic Review and Analysis. J Med Syst 44, 162 (2020). https://doi.org/10.1007/s10916-020-01626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-020-01626-2

Keywords