Geometric Moments and Their Invariants | Journal of Mathematical Imaging and Vision Skip to main content
Log in

Geometric Moments and Their Invariants

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Moments and their invariants have been extensively used in computer vision and pattern recognition. There is an extensive and sometimes confusing literature on the computation of a basis of functionally independent moments up to a given order. Many approaches have been used to solve this problem albeit not entirely successfully. In this paper we present a (purely) matrix algebra approach to compute both orthogonal and affine invariants for planar objects that is ideally suited to both symbolic and numerical computation of the invariants. Furthermore we generate bases for both systems of invariants and, in addition, our approach generalises to higher dimensional cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abu-Mostafa, Y., Psaltis, D.: Recognitive aspects of moment invariants. IEEE Trans. Pattern Anal. Mach. Intell. 6, 698–706 (1984)

    Article  Google Scholar 

  2. Chong, C., Raveendran, R., Mukundan, R.: Translation and scale invariants of Legendre moments. Pattern Recognit. 37, 119–129 (2004)

    Article  MATH  Google Scholar 

  3. Flusser, J.: On the independence of rotation moment invariants. Pattern Recognit. 33, 1405–1410 (2000)

    Article  Google Scholar 

  4. Flusser, J.: On the inverse problem of rotation moment invariants. Pattern Recognit. 35, 3015–3017 (2002)

    Article  MATH  Google Scholar 

  5. Flusser, J., Suk, T., Zitová, B.: Moments and Moment Invariants in Pattern Recognition. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  6. Grace, J.H., Young, A.: The Algebra of Invariants. Cambridge University Press, Cambridge (1903)

    MATH  Google Scholar 

  7. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. Inf. Theory 8, 179–187 (1962)

    MATH  Google Scholar 

  8. Hubert, E., Kogan, I.A.: Rational invariants of a group action. Construction and rewriting. J. Symb. Comput. 42, 203–217 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Jin, L., Tianxu, Z.: Fast algorithm for generation of moment invariants. Pattern Recognit. 37, 1745–1756 (2004)

    Article  MATH  Google Scholar 

  10. Laub, A.J.: Matrix Analysis for Scientists & Engineers. Philadelphia, SIAM (2005)

    Book  MATH  Google Scholar 

  11. Li, Y.: Reforming the theory of invariant moments for pattern recognition. Pattern Recognit. 25, 723–730 (1992)

    Article  Google Scholar 

  12. Mukundan, R., Ong, S., Lee, P.: Image analysis by Tchebichef moments. IEEE Trans. Image Process. 10, 1357–1364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Olver, P.: Classical Invariant Theory. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  14. Suk, T., Flusser, J.: Affine moment invariants generated by graph method. Pattern Recognit. 44, 2047–2056 (2011)

    Article  Google Scholar 

  15. Taubin, G., Cooper, D.B.: Object recognition based on moment (or algebraic) invariants. In: Geometric Invariance in Computer Vision, Artificial Intelligence, pp. 375–397. MIT Press, Cambridge (1992)

    Google Scholar 

  16. Teague, M.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  17. Wallin, A., Küber, O.: Complete sets of complex Zernike moment invariants and the role of the pseudoinvariants. IEEE Trans. Pattern Anal. Mach. Intell. 17, 1106–1110 (1995)

    Article  Google Scholar 

  18. Weisstein, E.W.: CRC Concise Encyclopedia of Mathematics, 2nd edn. Chapman & Hall/CRC, Baton Rouge (2003)

    Google Scholar 

  19. Wong, W., Siu, W., Lam, K.: Generation of moment invariants and their uses for character recognition. Pattern Recognit. Lett. 16, 115–123 (1995)

    Article  Google Scholar 

  20. Xu, D., Li, H.: Geometric moment invariants. Pattern Recognit. 41, 240–249 (2008)

    Article  MATH  Google Scholar 

  21. Yap, P., Paramesran, R., Ong, S.: Image analysis by Krawtchouk moments. IEEE Trans. Image Process. 12, 1367–1377 (2003)

    Article  MathSciNet  Google Scholar 

  22. Zhang, H., Shu, H., Haigron, P., Li, B., Luo, L.: Construction of a complete set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications. Image Vis. Comput. 28, 38–44 (2010)

    Article  Google Scholar 

  23. Zhao, D., Chen, J.: Affine curve moment invariants for shape recognition. Pattern Recognit. 30, 895–901 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

I would like to thank the Galaad group at INRIA Sophia Antipolis for hosting me while this work was completed. In particular, I would like to thank Evelyne Hubert for fruitful discussions on this material and for running her code and comparing its output with the basis given in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. Hickman.

Appendix: Maple code

Appendix: Maple code

The following Maple code allows one to construct orthogonal invariants of any order and in any number of variables.

figure a

The default choice of variables is x, y. For other choices the command Moments must be executed first with the optional argument vars. For example, execution of the command Moments(1,vars=[x,y,z]); will allow orthogonal invariants in ℝ3 to be computed. This code may be easily modified to compute the affine invariants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hickman, M.S. Geometric Moments and Their Invariants. J Math Imaging Vis 44, 223–235 (2012). https://doi.org/10.1007/s10851-011-0323-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0323-x

Keywords

Navigation