On the Decomposition of Interval-Valued Fuzzy Morphological Operators | Journal of Mathematical Imaging and Vision Skip to main content
Log in

On the Decomposition of Interval-Valued Fuzzy Morphological Operators

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Interval-valued fuzzy mathematical morphology is an extension of classical fuzzy mathematical morphology, which is in turn one of the extensions of binary morphology to greyscale morphology. The uncertainty that may exist concerning the grey value of a pixel due to technical limitations or bad recording circumstances, is taken into account by mapping the pixels in the image domain onto an interval to which the pixel’s grey value is expected to belong instead of one specific value. Such image representation corresponds to the representation of an interval-valued fuzzy set and thus techniques from interval-valued fuzzy set theory can be applied to extend greyscale mathematical morphology. In this paper, we study the decomposition of the interval-valued fuzzy morphological operators. We investigate in which cases the [α 1,α 2]-cuts of these operators can be written or approximated in terms of the corresponding binary operators. Such conversion into binary operators results in a reduction of the computation time and is further also theoretically interesting since it provides us a link between interval-valued fuzzy and binary morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, San Diego (1982)

    MATH  Google Scholar 

  2. Haralick, R.M., Sternberg, R.S., Zhuang, X.: Image analysis using mathematical morphology. IEEE Trans. Pattern Anal. Mach. Intell. 9(4), 532–550 (1987)

    Article  Google Scholar 

  3. De Baets, B.: Fuzzy morphology: a logical approach. In: Ayyub, B.M., Gupta, M.M. (eds.) Uncertainty Analysis in Engineering and Sciences: Fuzzy Logic, Statistics, and Neural Network Approach, pp. 53–67. Kluwer Academic, Dordrecht (1997)

    Google Scholar 

  4. Sussner, P., Valle, M.E.: Classification of fuzzy mathematical morphologies based on concepts of inclusion measure and duality. J. Math. Imaging Vis. 32(2), 139–159 (2008)

    Article  MathSciNet  Google Scholar 

  5. Popov, A.T.: General approach for fuzzy mathematical morphology. In: Proceedings of ISMM 2007 (International Symposium on Mathematical Morphology), pp. 39–47 (2007)

  6. Bloch, I.: Mathematical morphology on bipolar fuzzy sets. In: Proceedings of ISMM 2007 (International Symposium on Mathematical Morphology), pp. 3–4 (2007)

  7. Bloch, I.: Dilation and erosion of spatial bipolar fuzzy sets. In: Lecture Notes in Artificial Intelligence (Proceedings of WILF 2007), vol. 4578, pp. 385–393 (2007)

  8. Nachtegael, M., Sussner, P., Mélange, T., Kerre, E.E.: Some aspects of interval-valued and intuitionistic fuzzy mathematical morphology. In: Proceedings of IPCV 2008 (International Conference on Image Processing, Computer Vision and Pattern Recognition) (2008)

  9. Nachtegael, M., Sussner, P., Mélange, T., Kerre, E.E.: Modelling numerical and spatial uncertainty in grayscale image capture using fuzzy set theory. In: Proceedings of NASTEC 2008, pp. 15–22 (2008)

  10. Sambuc, R.: Fonctions Φ-floues. Application à l’aide au diagnostic en pathologie thyroidienne. Ph.D. thesis, Univ. Marseille, France (1975)

  11. Zadeh, L.: Fuzzy Sets. Inf. Control 8, 338–353 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  12. Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 133, 227–235 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cabrera, S.D., Iyer, K., Xiang, G., Kreinovich, V.: On inverse halftoning: computational complexity and interval computations. In: Proceedings of CISS 2005 (39th Conference on Information Sciences and Systems), The John Hopkins University, paper 164 (2005)

  14. Brito, A.E., Kosheleva, O.: Interval+image=wavelet: for image processing under interval uncertainty, wavelets are optimal. Reliab. Comput. 4(4), 771–783 (1998)

    MathSciNet  Google Scholar 

  15. Barrenechea, E.: Image processing with interval-valued fuzzy sets—edge detection—contrast. Ph.D. thesis, Public university of Navarra (2005)

  16. Palma, G., Bloch, I., Muller, S.: Fuzzy connected filters for fuzzy gray scale images. In: Proceedings of IPMU’08 (Information Processing and Management of Uncertainty in Knowledge-Based Systems), pp. 667–674 (2008)

  17. Atanassov, K.: Intuitionistic Fuzzy Sets. Physica Verlag, Heidelberg (1999)

    MATH  Google Scholar 

  18. Deschrijver, G., Cornelis, C.: Representability in interval-valued fuzzy set theory. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 15(3), 345–361 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bloch, I.: Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations. Fuzzy Sets Syst. 160, 1858–1867 (2009)

    Google Scholar 

  20. Nachtegael, M., Kerre, E.E.: Connections between binary, gray-scale and fuzzy nathematical morphology. Fuzzy Sets Syst. 124, 73–86 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Wang, G., Li, X.: The applications of interval-valued fuzzy numbers and interval-distribution numbers. Fuzzy Sets Syst. 98, 331–335 (1998)

    Article  MATH  Google Scholar 

  22. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  23. Nachtegael, M., Kerre, E.E.: Decomposing and constructing of fuzzy morphological operations over alpha-cuts: continuous and discrete case. IEEE Trans. Fuzzy Syst. 8(5), 615–626 (2000)

    Article  Google Scholar 

  24. Zhuang, X., Haralick, R.: Morphological structuring element decomposition. Computer Vis. Graph. Image Process. 35, 370–382 (1986)

    Article  Google Scholar 

  25. Park, H., Chin, R.T.: Decomposition of arbitrarily shaped morphological structuring elements. IEEE Trans. Pattern Anal. Mach. Intell. 17(1), 2–15 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Mélange.

Additional information

This work was financially supported by the GOA project B/04138/01 IV 1 of Ghent University and by CNPq under grant no. 306040/2006-9.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mélange, T., Nachtegael, M., Sussner, P. et al. On the Decomposition of Interval-Valued Fuzzy Morphological Operators. J Math Imaging Vis 36, 270–290 (2010). https://doi.org/10.1007/s10851-009-0185-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0185-7

Keywords

Navigation