Design of Multi-sensor Fusion Architectures Based on the Covariance Intersection Algorithm—Estimating Calculation Burdens | Journal of Intelligent & Robotic Systems Skip to main content
Log in

Design of Multi-sensor Fusion Architectures Based on the Covariance Intersection Algorithm—Estimating Calculation Burdens

  • Regular Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

This paper addresses the problem of multi-sensor fusion and estimation for a system composed of several collaborative subsystems. A multi-sensor fusion approach based on the Kalman filter and the covariance intersection algorithm is proposed. Moreover, centralized and distributed architectures are presented and discussed—the breakdown of calculation burdens on each system component is determined. The purpose is to help in the choice of the best fusion architecture for a system composed of several collaborative subsystems, especially systems with a large number of sensors. Finally, the approach is experimentally illustrated in the context of collaborative mobile robotics. A numerical study is provided to illustrate the efficiency of each proposed architecture. Compared to the centralized architecture, the partially distributed architecture showed good stability and low requirements on the communication capacity and computing speed of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shen, H.C., Wang, X.G.: Multiple hypotheses testing method for distributed multisensor systems. J. Intell. Robot. Syst. 30(2), 119–141 (2001)

    Article  Google Scholar 

  2. Fan, J., Xie, W., Du, H.A.: Robust multi-sensor data fusion clustering algorithm based on density peaks. Sensors 20(238) (2020)

  3. Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of the state-of-the-art. Inf. Fusion 14(1), 28–44 (2013)

    Article  Google Scholar 

  4. Zou, L., Wang, Z., Hu, J., Han, Q.L.: Moving horizon estimation meets multi-sensor information fusion: development, opportunities and challenges. Inf. Fusion 60, 1–10 (2020)

    Article  Google Scholar 

  5. Kayacan, E., Chowdhary, G.: Tracking error learning control for precise mobile robot path tracking in outdoor environment. J. Intell. Robot. Syst. 95, 975–986 (2019). https://doi.org/10.1007/s10846-018-09

    Article  Google Scholar 

  6. Smith, D., Singh, S.: Approaches to multisensor data fusion in target tracking: a survey. IEEE Trans. Knowl. Data Eng. 18(12), 1696–1710 (2006)

    Article  Google Scholar 

  7. Weiss, R., Glösekötter, P., Prestes, E., et al.: Hybridisation of sequential monte carlo simulation with non-linear bounded-error state estimation applied to global localisation of mobile robots. J. Intell. Robot. Syst. https://doi.org/10.1007/s10846-019-01118-7 (2019)

  8. Chong, C.Y., Mori, S., Barker, W.H., Chang, K.C.: Architectures and algorithms for track association and fusion. IEEE Aerosp. Electron. Syst. Mag. 15(1), 5–13 (2000)

    Article  Google Scholar 

  9. Munoz-Barron, B., Rivera-Guillen, J.R., et al.: Sensor fusion for joint kinematic estimation in serial robots using encoder, accelerometer and gyroscope. J. Intell. Robot. Syst. 78, 529–540 (2015). https://doi.org/10.1007/s10846-014-0125-7

    Article  Google Scholar 

  10. Li, X.R., Zhu, Y., Wang, J., Han, C.: Optimal linear estimation fusion. I. Unified fusion rules. IEEE Trans. Inf. Theory 49(9), 2192–2208 (2003)

    Article  Google Scholar 

  11. Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)

    Article  MathSciNet  Google Scholar 

  12. Zhong, X., Peng, X.: Robots visual servo control with features constraint employing Kalman-neural-network filtering scheme. Neurocomputing 151, 268–277 (2015)

    Article  Google Scholar 

  13. Haykin, S.: Kalman Filtering and Neural Networks, vol. 47. Wiley, New York (2004)

    Google Scholar 

  14. Hur, S.H.: Estimation of useful variables in wind turbines and farms using neural networks and extended Kalman filter. IEEE Access 7, 24017–24028 (2019)

    Article  Google Scholar 

  15. Julier, S.J., Uhlmann, J.K.: A non-divergent estimation algorithm in the presence of unknown correlations. In: Proceedings of the 1997 American Control Conference (Cat. No.97CH36041), Albuquerque, NM, USA, vol. 4, pp 2369–2373 (1997)

  16. Uhlmann, J.K.: General data fusion for estimates with unknown cross covariances. In: Proceedings of SPIE 2755, Signal Processing, Sensor Fusion, and Target Recognition (1996)

  17. Wang, Y., Li, X.R.: Distributed estimation fusion with unavailable cross-correlation. IEEE Trans. Aerosp. Electron. Syst. 48(1), 259–278 (2012)

    Article  Google Scholar 

  18. Li, W., Wang, Z., Wei, G., Ma, L., Hu, J., Ding, D.: A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks. Discrete Dynamics in Nature and Society (2015)

  19. Li, H., Nashashibi, F.: Cooperative multi-vehicle localization using split covariance intersection filter. IEEE Intell. Transp. Syst. Mag. 5(2), 33–44 (2013)

    Article  Google Scholar 

  20. Noack, B., Sijs, J., Reinhardt, M., Hanebeck, U.D.: Decentralized data fusion with inverse covariance intersection. Automatica 79, 35–41 (2017). https://doi.org/10.1016/j.automatica.2017.01.019

    Article  MathSciNet  Google Scholar 

  21. Reinhardt, M., Noack, B., Arambel P.O., Hanebeck, U.D.: Minimum covariance bounds for the fusion under unknown correlations. IEEE Signal Process. Lett. 22(9), 1210–1214 (2015)

    Article  Google Scholar 

  22. Sijs, J., Lazar, M., Van den Bosch, P.P.J., Papp, Z.: An overview of non-centralized Kalman filters. In: 2008 IEEE International Conference on Control Applications, pp 739–744 (2008)

  23. Sijs, J., Lazar, M.: A distributed Kalman filter with global covariance. In: Proceedings of the 2011 American Control Conference, pp 4840–4845 (2011)

  24. Salerno, J., Hinman, M., Boulware, D.: Building a framework for situational awareness. In: Proceedings of the Seventh International Conference on Information Fusion, pp 219–226 (2004)

  25. Durrant-Whyte, H.: A beginner’s guide to decentralised data fusion, Technical Document of Australian Centre for Field Robotics, University of Sydney, Australia, pp 1–27 (2000)

  26. Niehsen, W.: Information fusion based on fast covariance intersection filtering. In: Proceedings of the Fifth International Conference on Information Fusion, FUSION 2002, (IEEE Cat.No.02EX5997), Annapolis, vol. 2, pp 901–904 (2002)

  27. Hurley, M.B.: An information theoretic justification for covariance intersection and its generalization. In: Proceedings of the Fifth International Conference on Information Fusion, FUSION 2002, (IEEE Cat.No.02EX5997), Annapolis, vol. 1, pp 505–511 (2002)

  28. Assimakis, N., Adam, M.: Discrete time Kalman and Lainiotis filters comparison. Int. J. Math. Anal. 1(13), 635–659 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Assimakis, N., Adam, M., Douladiris, A.: Information filter and Kalman filter comparison: selection of the faster filter. Int. J. Inf. Eng. 2(1), 1–5 (2012)

    Google Scholar 

  30. Levy, L.J.: Sub optimality of cascaded and federated Kalman filters. In: Proceedings of the 52nd Annual Meeting of the Institute of Navigation, Cambridge, pp 19–21 (1996)

  31. Allerton, D.J., Jia, H.: A review of multisensor fusion methodologies for aircraft navigation systems. J. Navig. 58(3), 405–417 (2005)

    Article  Google Scholar 

  32. Lawrence, P.J., Berarducci, M.P.: Comparison of federated and centralized Kalman filters with fault detection considerations. In: Proceedings of 1994 IEEE Position, Location and Navigation Symposium - PLANS’94, Las Vegas, pp 703–710 (1994)

  33. Koubaa, A.: Robot Operating System (ROS). Springer, Cham (2017)

    Book  Google Scholar 

  34. Censi, A.: An ICP variant using a point-to-line metric. In: IEEE International Conference on Robotics and Automation, Pasadena, pp 19–25 (2008)

  35. Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots, Chapters 4, 5 and 6. MIT Press (2011)

  36. Daass, B., Pomorski, D., Haddadi, K.: Using an adaptive entropy-based threshold for change detection methods—application to fault-tolerant fusion in collaborative mobile robotics. In: 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, pp 1173–1178 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilal Daass.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Calculation Burden of Matrix Operations

Matrix operation

Matrix dimension

Calculation burden

A + B = C

[n × m] + [n × m]

nm

A + B = S

[n × n] + [n × n]

\( \frac {n^{2}}{2}+ \frac {n}{2} \)

I + A = B

[n × n] + [n × n]

n

A.B = C

[n × m].[m × l]

2nmlnl

A.B = S

[n × m].[m × n]

\(n^{2} m+nm- \frac {n^{2}+n}{2}\)

A− 1 = B

[n × n]

\(\frac {1}{6} (16n^{3}-3n^{2}-n)\)

Appendix B: Calculation Burden of Kalman Filter

Matrix operation

Matrix dimension

Calculation burden

Prediction step

\({F_{k}^{i}} X_{k-1/k-1}^{i}\)

[ni × ni].[ni × 1]

2(ni)2ni

\({F_{k}^{i}} P_{k-1/k-1}^{i}\)

[ni × ni].[ni × ni]

2(ni)3 − (ni)2

\({F_{k}^{i}} P_{k-1/k-1}^{i}({F_{k}^{i}})^{T}\)

[ni × ni].[ni × ni]

\((n^{i})^{3}+\frac {(n^{i})^{2}-n^{i}}{2}\)

\({F_{k}^{i}} P_{k-1/k-1}^{i}({F_{k}^{i}})^{T}\)

[ni × ni] + [ni × ni]

\(\frac {(n^{i})^{2}+n^{i}}{2}\)

\(+{Q_{k}^{i}}\)

  

Update step

\({H_{k}^{i}} P_{k/k-1}^{i}\)

[mi × ni] + [ni × ni]

2(ni)2minimi

\({H_{k}^{i}}P_{k/k-1}^{i}({H_{k}^{i}})^{T}\)

[mi × ni].[ni × mi]

ni(mi)2 + nimi

  

\(-\frac {(m^{i})^{2}+m^{i}}{2}\)

\({S_{k}^{i}}={R_{k}^{i}}+{H_{k}^{i}} P_{k/k-1}^{i}\)

[mi × mi]

\(\frac {(m^{i})^{2}+m^{i}}{2}\)

\(({H_{k}^{i}})^{T}\)

+ [mi × mi]

 

\(({S_{k}^{i}})^{-1}\)

[mi × mi]

\(\frac {1}{6}[16(m^{i})^{3}\)

  

− 3(mi)2mi]

\({K_{k}^{i}}=P_{k/k-1}^{i}({H_{k}^{i}})^{T}\)

[ni × mi].[mi × mi]

2ni(mi)2nimi

\(({S_{k}^{i}})^{-1}\)

  

\({K_{k}^{i}}{H_{k}^{i}}\)

[ni × mi].[mi × ni]

2(ni)2mi − (ni)2

\(I-{K_{k}^{i}}{H_{k}^{i}}\)

[ni × ni] + [ni × ni]

n i

\({K_{k}^{i}}{Z_{k}^{i}}\)

[ni × mi].[mi × 1]

2nimini

\((I-{K_{k}^{i}}{H_{k}^{i}})X_{k/k-1}\)

[ni × ni].[ni × 1]

2(ni)2ni

\((I-{K_{k}^{i}}{H_{k}^{i}})X_{k/k-1}^{i}\)

[ni × 1] + [ni × 1]

n i

\(+{K_{k}^{i}}{Z_{k}^{i}}\)

  

\((I-{K_{k}^{i}}{H_{k}^{i}})P_{k/k-1}^{i}\)

[ni × ni].[ni × ni]

\((n^{i})^{3}+\frac {(n^{i})^{2}-n^{i}}{2}\)

Appendix C: Calculation Burden of Covariance Intersection Algorithm

 

Calculation burden

Calculation of \({w_{p}^{i}}\)

\(tr({R_{p}^{i}})~~~~(p=1 \to {N_{r}^{i}})\)

\({N_{r}^{i}} (n^{i}-1)\)

\({\sum }_{q=1}^{N} \frac {1}{tr({R_{q}^{i}} )}\)

\(Divisions: N_{r}^{i}\)

 

Additions :

 

\((N_r^i-1 )\)

\(\frac {\frac {1}{tr({R_{p}^{i}})}}{{\sum }_{q=1}^{N} \frac {1}{tr({R_{q}^{i}} )}}\)

\(Divisions : {N_{r}^{i}}\)

\(Total: {w_{p}^{i}}\)

\({N_{r}^{i}} (n^{i}+2)-1\)

Calculation of \(R_{p}^{i}\)

\({w_{p}^{i}} {R_{p}^{i}} \)

\( {N_{r}^{i}} \times \frac {n^{i} (n^{i}+1)}{2} \)

\((R_p^i)^{-1}\)

\(\frac {N_r^i}{6} \times [16(n^i)^3\)

[ni × ni]− 1;

− 3(ni)2ni]

\((p=1 \to N_r^i)\)

 

\(w_p^i (R_p^i)^{-1}; \)

\({N_{r}^{i}} \times \frac {n^{i} (n^{i}+1)}{2}\)

\((p=1\to N_r^i)\)

 

\({\sum }_{p=1}^{{N_{r}^{i}}}{w_{p}^{i}} ({R_{p}^{i}})^{-1}; \)

\((N_r^i-1)\times \frac {n^i (n^i+1)}{2}\)

[ni × ni] + [ni × ni]

 

\([{\sum }_{p=1}^{N_r^i}w_p^i (R_p^i)^{-1}]^{-1}\)

\(\frac {1}{6} \times [16(n^i)^3-3(n^i)^2-n^i]\)

Total : Ri

\((3N_r^i-1)\times \frac {n^i(n^i+1)}{2}+\frac {N_r^i+1}{6}\)

 

× [16(ni)3 − 3(ni)2ni]

Calculation of Zi

\( {w_{p}^{i}}({R_{p}^{i}})^{-1} {Z_{p}^{i}}\)

\({N_{r}^{i}} (2(n^{i} )^{2}-n^{i})\)

\( (p=1\to {N_{r}^{i}} );\)

[ni × ni].[ni × 1]

 

\({\sum }_{p=1}^{{N_{r}^{i}}}{w_{p}^{i}}({R_{p}^{i}})^{-1} {Z_{p}^{i}} \)

\(({N_{r}^{i}}-1)n^{i}\)

\(R^{i} {\sum }_{p=1}^{{N_{r}^{i}}}{w_{p}^{i}}({R_{p}^{i}})^{-1} {Z_{p}^{i}};\)

2(ni)2ni

[ni × ni].[ni × 1]

 

Total : Zi

\(2n^i (n^i N_r^i+n^i-1)\)

Appendix D: Calculation Burden of the EKF Prediction Step

Matrix operation

Matrix dimension

Calculation burden

\(A_k^iU_k^i\)

[ni × li].[li × 1]

2nilini

\(X_{k-1}^i+A_k^iU_k^i\)

[ni × 1]

n i

 

+ [ni × 1]

 

\(F_k^iP_{k-1/k-1}^i{(F_k^i)}^T\)

[ni × ni].

\({(n^i)}^3+\frac {{(n^i)}^2}{2}\)

 

[ni × ni]

\(-\frac {n^i}{2}\)

\(G_k^i(Q_u^i)_k\)

[ni × li].[li × li]

2ni(li)2nili

\(G_k^i(Q_u^i)_k{(G_k^i)^T}\)

[ni × li].[li × ni]

(ni)2li + nili

  

\(-\frac {{(n^i)}^2+n^i}{2}\)

\(F_k^iP_{k-1/k-1}^i{(F_k^i)}^T\)

[ni × ni]

\(\frac {{(n^i)}^2+n^i}{2}\)

\(+G_k^i(Q_u^i)_k{(G_k^i)^T}\)

+ [ni × ni]

 

\(F_k^iP_{k-1/k-1}^i{(F_k^i)}^T\)

[ni × ni]

\(\frac {{(n^i)}^2+n^i}{2}\)

\(+G_k^i(Q_u^i)_k{(G_k^i)^T}\)

+ [ni × ni]

 

\(+Q_k^i\)

  

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daass, B., Pomorski, D. & Haddadi, K. Design of Multi-sensor Fusion Architectures Based on the Covariance Intersection Algorithm—Estimating Calculation Burdens. J Intell Robot Syst 101, 77 (2021). https://doi.org/10.1007/s10846-021-01347-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-021-01347-9

Keywords

Navigation