Abstract
This paper addresses the problem of multi-sensor fusion and estimation for a system composed of several collaborative subsystems. A multi-sensor fusion approach based on the Kalman filter and the covariance intersection algorithm is proposed. Moreover, centralized and distributed architectures are presented and discussed—the breakdown of calculation burdens on each system component is determined. The purpose is to help in the choice of the best fusion architecture for a system composed of several collaborative subsystems, especially systems with a large number of sensors. Finally, the approach is experimentally illustrated in the context of collaborative mobile robotics. A numerical study is provided to illustrate the efficiency of each proposed architecture. Compared to the centralized architecture, the partially distributed architecture showed good stability and low requirements on the communication capacity and computing speed of the system.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shen, H.C., Wang, X.G.: Multiple hypotheses testing method for distributed multisensor systems. J. Intell. Robot. Syst. 30(2), 119–141 (2001)
Fan, J., Xie, W., Du, H.A.: Robust multi-sensor data fusion clustering algorithm based on density peaks. Sensors 20(238) (2020)
Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data fusion: a review of the state-of-the-art. Inf. Fusion 14(1), 28–44 (2013)
Zou, L., Wang, Z., Hu, J., Han, Q.L.: Moving horizon estimation meets multi-sensor information fusion: development, opportunities and challenges. Inf. Fusion 60, 1–10 (2020)
Kayacan, E., Chowdhary, G.: Tracking error learning control for precise mobile robot path tracking in outdoor environment. J. Intell. Robot. Syst. 95, 975–986 (2019). https://doi.org/10.1007/s10846-018-09
Smith, D., Singh, S.: Approaches to multisensor data fusion in target tracking: a survey. IEEE Trans. Knowl. Data Eng. 18(12), 1696–1710 (2006)
Weiss, R., Glösekötter, P., Prestes, E., et al.: Hybridisation of sequential monte carlo simulation with non-linear bounded-error state estimation applied to global localisation of mobile robots. J. Intell. Robot. Syst. https://doi.org/10.1007/s10846-019-01118-7 (2019)
Chong, C.Y., Mori, S., Barker, W.H., Chang, K.C.: Architectures and algorithms for track association and fusion. IEEE Aerosp. Electron. Syst. Mag. 15(1), 5–13 (2000)
Munoz-Barron, B., Rivera-Guillen, J.R., et al.: Sensor fusion for joint kinematic estimation in serial robots using encoder, accelerometer and gyroscope. J. Intell. Robot. Syst. 78, 529–540 (2015). https://doi.org/10.1007/s10846-014-0125-7
Li, X.R., Zhu, Y., Wang, J., Han, C.: Optimal linear estimation fusion. I. Unified fusion rules. IEEE Trans. Inf. Theory 49(9), 2192–2208 (2003)
Kalman, R.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35–45 (1960)
Zhong, X., Peng, X.: Robots visual servo control with features constraint employing Kalman-neural-network filtering scheme. Neurocomputing 151, 268–277 (2015)
Haykin, S.: Kalman Filtering and Neural Networks, vol. 47. Wiley, New York (2004)
Hur, S.H.: Estimation of useful variables in wind turbines and farms using neural networks and extended Kalman filter. IEEE Access 7, 24017–24028 (2019)
Julier, S.J., Uhlmann, J.K.: A non-divergent estimation algorithm in the presence of unknown correlations. In: Proceedings of the 1997 American Control Conference (Cat. No.97CH36041), Albuquerque, NM, USA, vol. 4, pp 2369–2373 (1997)
Uhlmann, J.K.: General data fusion for estimates with unknown cross covariances. In: Proceedings of SPIE 2755, Signal Processing, Sensor Fusion, and Target Recognition (1996)
Wang, Y., Li, X.R.: Distributed estimation fusion with unavailable cross-correlation. IEEE Trans. Aerosp. Electron. Syst. 48(1), 259–278 (2012)
Li, W., Wang, Z., Wei, G., Ma, L., Hu, J., Ding, D.: A Survey on Multisensor Fusion and Consensus Filtering for Sensor Networks. Discrete Dynamics in Nature and Society (2015)
Li, H., Nashashibi, F.: Cooperative multi-vehicle localization using split covariance intersection filter. IEEE Intell. Transp. Syst. Mag. 5(2), 33–44 (2013)
Noack, B., Sijs, J., Reinhardt, M., Hanebeck, U.D.: Decentralized data fusion with inverse covariance intersection. Automatica 79, 35–41 (2017). https://doi.org/10.1016/j.automatica.2017.01.019
Reinhardt, M., Noack, B., Arambel P.O., Hanebeck, U.D.: Minimum covariance bounds for the fusion under unknown correlations. IEEE Signal Process. Lett. 22(9), 1210–1214 (2015)
Sijs, J., Lazar, M., Van den Bosch, P.P.J., Papp, Z.: An overview of non-centralized Kalman filters. In: 2008 IEEE International Conference on Control Applications, pp 739–744 (2008)
Sijs, J., Lazar, M.: A distributed Kalman filter with global covariance. In: Proceedings of the 2011 American Control Conference, pp 4840–4845 (2011)
Salerno, J., Hinman, M., Boulware, D.: Building a framework for situational awareness. In: Proceedings of the Seventh International Conference on Information Fusion, pp 219–226 (2004)
Durrant-Whyte, H.: A beginner’s guide to decentralised data fusion, Technical Document of Australian Centre for Field Robotics, University of Sydney, Australia, pp 1–27 (2000)
Niehsen, W.: Information fusion based on fast covariance intersection filtering. In: Proceedings of the Fifth International Conference on Information Fusion, FUSION 2002, (IEEE Cat.No.02EX5997), Annapolis, vol. 2, pp 901–904 (2002)
Hurley, M.B.: An information theoretic justification for covariance intersection and its generalization. In: Proceedings of the Fifth International Conference on Information Fusion, FUSION 2002, (IEEE Cat.No.02EX5997), Annapolis, vol. 1, pp 505–511 (2002)
Assimakis, N., Adam, M.: Discrete time Kalman and Lainiotis filters comparison. Int. J. Math. Anal. 1(13), 635–659 (2007)
Assimakis, N., Adam, M., Douladiris, A.: Information filter and Kalman filter comparison: selection of the faster filter. Int. J. Inf. Eng. 2(1), 1–5 (2012)
Levy, L.J.: Sub optimality of cascaded and federated Kalman filters. In: Proceedings of the 52nd Annual Meeting of the Institute of Navigation, Cambridge, pp 19–21 (1996)
Allerton, D.J., Jia, H.: A review of multisensor fusion methodologies for aircraft navigation systems. J. Navig. 58(3), 405–417 (2005)
Lawrence, P.J., Berarducci, M.P.: Comparison of federated and centralized Kalman filters with fault detection considerations. In: Proceedings of 1994 IEEE Position, Location and Navigation Symposium - PLANS’94, Las Vegas, pp 703–710 (1994)
Koubaa, A.: Robot Operating System (ROS). Springer, Cham (2017)
Censi, A.: An ICP variant using a point-to-line metric. In: IEEE International Conference on Robotics and Automation, Pasadena, pp 19–25 (2008)
Siegwart, R., Nourbakhsh, I.R., Scaramuzza, D.: Introduction to Autonomous Mobile Robots, Chapters 4, 5 and 6. MIT Press (2011)
Daass, B., Pomorski, D., Haddadi, K.: Using an adaptive entropy-based threshold for change detection methods—application to fault-tolerant fusion in collaborative mobile robotics. In: 2019 6th International Conference on Control, Decision and Information Technologies (CoDIT), Paris, pp 1173–1178 (2019)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interests
The authors declare that they have no conflict of interest.
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A: Calculation Burden of Matrix Operations
Matrix operation | Matrix dimension | Calculation burden |
---|---|---|
A + B = C | [n × m] + [n × m] | nm |
A + B = S | [n × n] + [n × n] | \( \frac {n^{2}}{2}+ \frac {n}{2} \) |
I + A = B | [n × n] + [n × n] | n |
A.B = C | [n × m].[m × l] | 2nml − nl |
A.B = S | [n × m].[m × n] | \(n^{2} m+nm- \frac {n^{2}+n}{2}\) |
A− 1 = B | [n × n] | \(\frac {1}{6} (16n^{3}-3n^{2}-n)\) |
Appendix B: Calculation Burden of Kalman Filter
Matrix operation | Matrix dimension | Calculation burden |
---|---|---|
Prediction step | ||
\({F_{k}^{i}} X_{k-1/k-1}^{i}\) | [ni × ni].[ni × 1] | 2(ni)2 − ni |
\({F_{k}^{i}} P_{k-1/k-1}^{i}\) | [ni × ni].[ni × ni] | 2(ni)3 − (ni)2 |
\({F_{k}^{i}} P_{k-1/k-1}^{i}({F_{k}^{i}})^{T}\) | [ni × ni].[ni × ni] | \((n^{i})^{3}+\frac {(n^{i})^{2}-n^{i}}{2}\) |
\({F_{k}^{i}} P_{k-1/k-1}^{i}({F_{k}^{i}})^{T}\) | [ni × ni] + [ni × ni] | \(\frac {(n^{i})^{2}+n^{i}}{2}\) |
\(+{Q_{k}^{i}}\) | ||
Update step | ||
\({H_{k}^{i}} P_{k/k-1}^{i}\) | [mi × ni] + [ni × ni] | 2(ni)2mi − nimi |
\({H_{k}^{i}}P_{k/k-1}^{i}({H_{k}^{i}})^{T}\) | [mi × ni].[ni × mi] | ni(mi)2 + nimi |
\(-\frac {(m^{i})^{2}+m^{i}}{2}\) | ||
\({S_{k}^{i}}={R_{k}^{i}}+{H_{k}^{i}} P_{k/k-1}^{i}\) | [mi × mi] | \(\frac {(m^{i})^{2}+m^{i}}{2}\) |
\(({H_{k}^{i}})^{T}\) | + [mi × mi] | |
\(({S_{k}^{i}})^{-1}\) | [mi × mi] | \(\frac {1}{6}[16(m^{i})^{3}\) |
− 3(mi)2 − mi] | ||
\({K_{k}^{i}}=P_{k/k-1}^{i}({H_{k}^{i}})^{T}\) | [ni × mi].[mi × mi] | 2ni(mi)2 − nimi |
\(({S_{k}^{i}})^{-1}\) | ||
\({K_{k}^{i}}{H_{k}^{i}}\) | [ni × mi].[mi × ni] | 2(ni)2mi − (ni)2 |
\(I-{K_{k}^{i}}{H_{k}^{i}}\) | [ni × ni] + [ni × ni] | n i |
\({K_{k}^{i}}{Z_{k}^{i}}\) | [ni × mi].[mi × 1] | 2nimi − ni |
\((I-{K_{k}^{i}}{H_{k}^{i}})X_{k/k-1}\) | [ni × ni].[ni × 1] | 2(ni)2 − ni |
\((I-{K_{k}^{i}}{H_{k}^{i}})X_{k/k-1}^{i}\) | [ni × 1] + [ni × 1] | n i |
\(+{K_{k}^{i}}{Z_{k}^{i}}\) | ||
\((I-{K_{k}^{i}}{H_{k}^{i}})P_{k/k-1}^{i}\) | [ni × ni].[ni × ni] | \((n^{i})^{3}+\frac {(n^{i})^{2}-n^{i}}{2}\) |
Appendix C: Calculation Burden of Covariance Intersection Algorithm
Calculation burden | |
---|---|
Calculation of \({w_{p}^{i}}\) | |
\(tr({R_{p}^{i}})~~~~(p=1 \to {N_{r}^{i}})\) | \({N_{r}^{i}} (n^{i}-1)\) |
\({\sum }_{q=1}^{N} \frac {1}{tr({R_{q}^{i}} )}\) | \(Divisions: N_{r}^{i}\) |
Additions : | |
\((N_r^i-1 )\) | |
\(\frac {\frac {1}{tr({R_{p}^{i}})}}{{\sum }_{q=1}^{N} \frac {1}{tr({R_{q}^{i}} )}}\) | \(Divisions : {N_{r}^{i}}\) |
\(Total: {w_{p}^{i}}\) | \({N_{r}^{i}} (n^{i}+2)-1\) |
Calculation of \(R_{p}^{i}\) | |
\({w_{p}^{i}} {R_{p}^{i}} \) | \( {N_{r}^{i}} \times \frac {n^{i} (n^{i}+1)}{2} \) |
\((R_p^i)^{-1}\) | \(\frac {N_r^i}{6} \times [16(n^i)^3\) |
[ni × ni]− 1; | − 3(ni)2 − ni] |
\((p=1 \to N_r^i)\) | |
\(w_p^i (R_p^i)^{-1}; \) | \({N_{r}^{i}} \times \frac {n^{i} (n^{i}+1)}{2}\) |
\((p=1\to N_r^i)\) | |
\({\sum }_{p=1}^{{N_{r}^{i}}}{w_{p}^{i}} ({R_{p}^{i}})^{-1}; \) | \((N_r^i-1)\times \frac {n^i (n^i+1)}{2}\) |
[ni × ni] + [ni × ni] | |
\([{\sum }_{p=1}^{N_r^i}w_p^i (R_p^i)^{-1}]^{-1}\) | \(\frac {1}{6} \times [16(n^i)^3-3(n^i)^2-n^i]\) |
Total : Ri | \((3N_r^i-1)\times \frac {n^i(n^i+1)}{2}+\frac {N_r^i+1}{6}\) |
× [16(ni)3 − 3(ni)2 − ni] | |
Calculation of Zi | |
\( {w_{p}^{i}}({R_{p}^{i}})^{-1} {Z_{p}^{i}}\) | \({N_{r}^{i}} (2(n^{i} )^{2}-n^{i})\) |
\( (p=1\to {N_{r}^{i}} );\) | |
[ni × ni].[ni × 1] | |
\({\sum }_{p=1}^{{N_{r}^{i}}}{w_{p}^{i}}({R_{p}^{i}})^{-1} {Z_{p}^{i}} \) | \(({N_{r}^{i}}-1)n^{i}\) |
\(R^{i} {\sum }_{p=1}^{{N_{r}^{i}}}{w_{p}^{i}}({R_{p}^{i}})^{-1} {Z_{p}^{i}};\) | 2(ni)2 − ni |
[ni × ni].[ni × 1] | |
Total : Zi | \(2n^i (n^i N_r^i+n^i-1)\) |
Appendix D: Calculation Burden of the EKF Prediction Step
Matrix operation | Matrix dimension | Calculation burden |
---|---|---|
\(A_k^iU_k^i\) | [ni × li].[li × 1] | 2nili − ni |
\(X_{k-1}^i+A_k^iU_k^i\) | [ni × 1] | n i |
+ [ni × 1] | ||
\(F_k^iP_{k-1/k-1}^i{(F_k^i)}^T\) | [ni × ni]. | \({(n^i)}^3+\frac {{(n^i)}^2}{2}\) |
[ni × ni] | \(-\frac {n^i}{2}\) | |
\(G_k^i(Q_u^i)_k\) | [ni × li].[li × li] | 2ni(li)2 − nili |
\(G_k^i(Q_u^i)_k{(G_k^i)^T}\) | [ni × li].[li × ni] | (ni)2li + nili |
\(-\frac {{(n^i)}^2+n^i}{2}\) | ||
\(F_k^iP_{k-1/k-1}^i{(F_k^i)}^T\) | [ni × ni] | \(\frac {{(n^i)}^2+n^i}{2}\) |
\(+G_k^i(Q_u^i)_k{(G_k^i)^T}\) | + [ni × ni] | |
\(F_k^iP_{k-1/k-1}^i{(F_k^i)}^T\) | [ni × ni] | \(\frac {{(n^i)}^2+n^i}{2}\) |
\(+G_k^i(Q_u^i)_k{(G_k^i)^T}\) | + [ni × ni] | |
\(+Q_k^i\) |
Rights and permissions
About this article
Cite this article
Daass, B., Pomorski, D. & Haddadi, K. Design of Multi-sensor Fusion Architectures Based on the Covariance Intersection Algorithm—Estimating Calculation Burdens. J Intell Robot Syst 101, 77 (2021). https://doi.org/10.1007/s10846-021-01347-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10846-021-01347-9