Abstract
The design problem of an adaptive controller for a robotic micromanipulator is considered in this article. The micromanipulator’s dynamic model is appropriately modified in order to include the interaction of the attractive Van der Waals (VdW) forces that are typically encountered in the microworld. For modelling purposes every link is decomposed into a series of elementary particles (e.g. spheres), each one interacting with the robot’s neighboring objects during its motion. This interaction induces nonlinear additive terms in the model, attributed primarily to the overall effect of the VdW–forces and secondarily by the nanoscale friction. Sparked by recent advancements in nanowires the actuation is achieved by a nanowire-driven system in a tendon-like configuartion. At each joint, a pair of nanowires are attached and act in a passive antagonistic manner. The kinematic and dynamic analysis of the nanowire-driven actuation mechanism is offered. Consequently, the microrobot’s model is shown to be linearly parameterizable. Subject to this observation, a globally stabilizable adaptive control scheme is derived, estimating the unknown parameters (masses, generalized VdW–forces) and compensating any variations of those. Simulation studies on a 2-DOF and a 10-DOF planar micromanipulator are offered to highlight the effectiveness of the proposed scheme.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Seeger, A., Paulson, S., Falvo, M., Helser, A., Taylor, R., Superfine, R., Washburn, S.: Hands-on tools for nanotechnology. J. Vac. Sci. Technol. 19, 2717–2722 (2001)
Guthold, M., Falvo, M., Matthews, W., Paulson, S., Washburn, S., ErieDorothy, A., Superfine, R., Brooks, F., Taylor, R.: Controlled manipulation of molecular samples with the nanomanipulator. Trans. Mechatron. 5, 189–198 (2000)
Liu, X.-J., Wang, J., Gao, F., Wang, L.-P.: On the design of 6-dof parallel micro-motion manipulators. In: IEEE International Conference on Intelligent Robots and Systems, vol. 1, pp. 343–348 (2001)
Yamamoto, H., Sano, T.: Study of micromanipulation using stereoscopic microscope. IEEE Trans. Instrum. Meas. 51, 182–187 (2002)
Sitti, M.: Teleoperated 2-D micro/nanomanipulation using atomic force microscope. Ph.D. thesis, Electrical Engineering Dept., University of Tokyo, Tokyo, Japan (1999)
Xie, J.Y.J., Mukhopadyay, K., Varadan, V.: Coiled carbon nanotubes: their structural and electrical properties. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 5055, pp. 223–229 (2003)
Yakobson, B., Avouris, P.: Mechanical properties of carbon nanotubes. Top. Appl. Phys. 80, 287–327 (2001)
Chen, X., Zhang, S., Dikin, D., Ding, W., Ruoff, R., Pan, L., Nakayama, Y.: Mechanics of a carbon nanocoil. Nano Lett. 3(9), 1299–1304 (2003)
el Hak, M.G.: The MEMS Handbook. CRC Press, Boca Raton (2002)
Gotszalk, T., Grabiec, P., Rangelow, I.: Application of electrostatic force microscopy in nanosystem diagnostics. Mater. Sci. 21(3), 332–339 (2003)
Madou, M.: Fundamentals of Microfabrication. CRC Press, Boca Raton (1997)
Tambe, N.-S., Bhushan, B.: Friction model for the velocity dependence of nanoscale friction. Nanotechnology 16, 2309–2324 (2005)
Slotine, J.-J., Li, W.: Composite adaptive control of robot manipulators. Automatica 25, 509–519 (1989)
Sastry, S., Bodson, M.: Adaptive Control: Stability, Convergence, and Robustness. Prentice Hall, Englewood Cliffs (1989)
Siciliano, B., Villani, L.: Robot Force Control. The Kluwer International Series in Engineering and Computer Science, vol. 540. Kluwer, Boston (2000)
Argento, C., French, R.: Parametric tip model and force-distance relation for hamaker constant determination from atomic force microscopy. J. Appl. Phys. 80(11), 6081–6090 (1996)
Hamaker, H.: The London—Van de waals attraction between spherical particles. Physica IV(10), 1058–1072 (1937)
Jacobsen, S., Ko, H., Iversen, E., Davis, C.: Control strategies for tendon-driven manipulators. In: IEEE Conference on Robotics and Automation (1989)
Lee, Y.-H., Lee, J.-J.: Modeling of the dynamics of tendon-driven robotic mechanisms with flexible tendons. Mech. Mach. Theory 38, 1431–1447 (2003)
Kobayashi, H., Ozawa, R.: Adaptive neural network control of tendon-driven mechanisms with elastic tendons. Automatica 39, 1509–1519 (2003)
Ma, S., Watanabe, M.: Minimum-time control of coupled tendon-driven manipulators. Adv. Robot. 15(4), 409–427 (2001)
Stevens, J., Buckner, G.: Intelligent control of a micro-manipulator actuated with shape memory alloy tendons. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 5049, pp. 56–64 (2003)
Slotine, J.-J., Li, W.: Applied Nonlinear Control. Englewood Cliffs, Prentice-Hall (1991)
Tzes, A., Peng, Y.-P., Guthy, J.: Genetic-based fuzzy clustering for dc-motor friction identification and compensation. IEEE Trans. Control Syst. Technol. 6(4), 462–472 (1998)
Armstrong-Helouvry, B., Dupont, P., de Wit, C.C.: A survey of analysis tools and compensation methods for the control of machines with friction. Automatica 30, 1083–1138 (1994)
Corwin, A.-D., DeBoer, M.-P.: Effect of adhesion on dynamic and static friction in surface micromachining. Appl. Phys. Lett. 84(13), 2451 (2004)
Zhao, Y.-P., Wang, L.-S., Yu, T.-X.: Mechanics of adhesion in mems—a review. J. Adhes. Sci. Technol. 17(4), 519–546 (2003)
Hariri, A., Zu, J.-W., Mrad, R.-B.: Modeling of surface forces between micron-sized objects in dry conditions. In: International Conference on MEMS, NANO and Smart Systems, pp. 623–628 (2004)
Bouhacina, T., Aime, J.-P., Gauthier, S., Michel, D.: Tribological behavior of a polymer grafter on silanized silica probed with a nanotip. Phys. Rev. B 56, 7694–7703 (1997)
Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., Guntherodt, H.-J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84 (2000)
Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91(8), 084502–14 (2003)
Tao, Z., Bhushan, B.: Velocity dependence and rest time effect on nanoscale friction of ultrathin films at high sliding velocities. J. Vac. Sci. Technol., A, Vac. Surf. Films 25, 1267–1274 (2007)
Niederberger, S., Gracias, D.-H., Komvopoulos, K., Somorjai, G.-A.: Transitions from nanoscale to microscale dynamic friction mechanisms on polyethylene and silicon surfaces. J. Appl. Phys. 87, 3143–3150 (2000)
Yoon, E.-S., Singh, R.-A., Oh, H.-J., Kong, H.: The effect of contact area on nano/micro-scale friction. Wear 259(7–12), 1424–1431 (2005)
Tambe, N.-S., Bhushan, B.: Scale dependence of micro/nano-friction and adhesion of mems/nems materials, coatings and lubricants. Nanotechnology 15, 1561–1570 (2004)
Bora, C.-K., Flater, E.-E., Street, M.-D., Redmond, J.-M., Starr, M.-J., Carpick, R.-W., Plesha, M.-E.: Multiscale roughness and modeling of mems interfaces. Tribol. Lett. 19, 37–48 (2005)
Tao, S.T.Q., Shizhu, W.: Micro-friction and adhesion measurements for si wafer and tib 2 thin film. Tsinghua Sci. Technol. 12, 261–268, ISSN:1007-0214 05/18 (2007)
Bhushan, B.: Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction. J. Vac. Sci. Technol., B Microelectron. Nanometer Struct. 21, 2262–2296 (2003)
Bhushan, B.: Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribol. Lett. 4(1), 1–35 (1998)
Koinkar, V.-N., Bhushan, B.: Effect of scan size and surface roughness on microscale friction measurements. J. Appl. Phys. 81, 2472–2479 (1997)
Bhushan, B., Liu, H., Hsu, S.-M.: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects. J. Tribol. 126, 583–590 (2004)
Stachowiak, G.-W., Batchelor, A.-W.: Engineering Tribology. Butterworth-Heinemann (2001)
Marinescu, J.-D., Rowe, W.-B., Dimitrov, B., Inasaki, I.: Tribology of Abrasive Machining Processes. Norwich, William Andrew Publishing (2004)
Deshpande, V.-S., Needleman, A., der Giessenn, E.V.: Discrete dislocation plasticity analysis of static friction. Acta Mater. 52, 3135–3149 (2004)
Gerberich, W.-W., Cordill, M.-J.: Physics of adhesion. Rep. Prog. Phys. 69, 2157–2203 (2006)
Greenwood, J.-A., Williamson, J.-B.-P.: Contact of nominally flat surfaces. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 295, pp. 300–319 (1966)
Nosonovsky, M.: Modelling size, load and velocity effect on friction at micro/nanoscale. Int. J. Surf. Sci. Eng. 1(1), 22–37 (2007)
Slotine, J.-J., Li, W.: On the adaptive control of robot manipulators. Int. J. Rob. Res. 6(3), 49–59 (1987)
Sage, H., DeMathelin, M., Ostertag, E.: Robust control of robot manipulators: a survey. Int. J. Control 72(16), 1498–1522 (1999)
Middleton, R., Goodwin, G.: Adaptive computed torque control for rigid link manipulators. Syst. Control. Lett. 10, 9–16 (1988)
Slotine, J., Sastry, S.: Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators. Int. J. Control 38, 465–492 (1983)
Pang, X., Volinsky, A.-A., Gao, K.: Moisture Effects on Nanowear of Gold Films, vol. 802 (2008). arXiv:0802.2384
Carpick, R.-W., Ogletree, D.-F., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70(12), 1548–1550 (1997)
Carpick, R.-W., Agrait, N., Ogletree, D.-F., Salmeron, M.: Variation of the interfacial shear strength and adhesion of a nanometer-sized contact. Langmuir 12(13), 3334–3340 (1996)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tsoukalas, A., Tzes, A. Modelling and Adaptive Control of Nanowire-Driven Micromanipulators. J Intell Robot Syst 62, 419–450 (2011). https://doi.org/10.1007/s10846-010-9452-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10846-010-9452-5