Modelling and Adaptive Control of Nanowire-Driven Micromanipulators | Journal of Intelligent & Robotic Systems Skip to main content
Log in

Modelling and Adaptive Control of Nanowire-Driven Micromanipulators

  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

The design problem of an adaptive controller for a robotic micromanipulator is considered in this article. The micromanipulator’s dynamic model is appropriately modified in order to include the interaction of the attractive Van der Waals (VdW) forces that are typically encountered in the microworld. For modelling purposes every link is decomposed into a series of elementary particles (e.g. spheres), each one interacting with the robot’s neighboring objects during its motion. This interaction induces nonlinear additive terms in the model, attributed primarily to the overall effect of the VdW–forces and secondarily by the nanoscale friction. Sparked by recent advancements in nanowires the actuation is achieved by a nanowire-driven system in a tendon-like configuartion. At each joint, a pair of nanowires are attached and act in a passive antagonistic manner. The kinematic and dynamic analysis of the nanowire-driven actuation mechanism is offered. Consequently, the microrobot’s model is shown to be linearly parameterizable. Subject to this observation, a globally stabilizable adaptive control scheme is derived, estimating the unknown parameters (masses, generalized VdW–forces) and compensating any variations of those. Simulation studies on a 2-DOF and a 10-DOF planar micromanipulator are offered to highlight the effectiveness of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Seeger, A., Paulson, S., Falvo, M., Helser, A., Taylor, R., Superfine, R., Washburn, S.: Hands-on tools for nanotechnology. J. Vac. Sci. Technol. 19, 2717–2722 (2001)

    Google Scholar 

  2. Guthold, M., Falvo, M., Matthews, W., Paulson, S., Washburn, S., ErieDorothy, A., Superfine, R., Brooks, F., Taylor, R.: Controlled manipulation of molecular samples with the nanomanipulator. Trans. Mechatron. 5, 189–198 (2000)

    Article  Google Scholar 

  3. Liu, X.-J., Wang, J., Gao, F., Wang, L.-P.: On the design of 6-dof parallel micro-motion manipulators. In: IEEE International Conference on Intelligent Robots and Systems, vol. 1, pp. 343–348 (2001)

  4. Yamamoto, H., Sano, T.: Study of micromanipulation using stereoscopic microscope. IEEE Trans. Instrum. Meas. 51, 182–187 (2002)

    Article  Google Scholar 

  5. Sitti, M.: Teleoperated 2-D micro/nanomanipulation using atomic force microscope. Ph.D. thesis, Electrical Engineering Dept., University of Tokyo, Tokyo, Japan (1999)

  6. Xie, J.Y.J., Mukhopadyay, K., Varadan, V.: Coiled carbon nanotubes: their structural and electrical properties. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 5055, pp. 223–229 (2003)

  7. Yakobson, B., Avouris, P.: Mechanical properties of carbon nanotubes. Top. Appl. Phys. 80, 287–327 (2001)

    Article  Google Scholar 

  8. Chen, X., Zhang, S., Dikin, D., Ding, W., Ruoff, R., Pan, L., Nakayama, Y.: Mechanics of a carbon nanocoil. Nano Lett. 3(9), 1299–1304 (2003)

    Article  Google Scholar 

  9. el Hak, M.G.: The MEMS Handbook. CRC Press, Boca Raton (2002)

    MATH  Google Scholar 

  10. Gotszalk, T., Grabiec, P., Rangelow, I.: Application of electrostatic force microscopy in nanosystem diagnostics. Mater. Sci. 21(3), 332–339 (2003)

    Google Scholar 

  11. Madou, M.: Fundamentals of Microfabrication. CRC Press, Boca Raton (1997)

    Google Scholar 

  12. Tambe, N.-S., Bhushan, B.: Friction model for the velocity dependence of nanoscale friction. Nanotechnology 16, 2309–2324 (2005)

    Article  Google Scholar 

  13. Slotine, J.-J., Li, W.: Composite adaptive control of robot manipulators. Automatica 25, 509–519 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sastry, S., Bodson, M.: Adaptive Control: Stability, Convergence, and Robustness. Prentice Hall, Englewood Cliffs (1989)

    MATH  Google Scholar 

  15. Siciliano, B., Villani, L.: Robot Force Control. The Kluwer International Series in Engineering and Computer Science, vol. 540. Kluwer, Boston (2000)

    Google Scholar 

  16. Argento, C., French, R.: Parametric tip model and force-distance relation for hamaker constant determination from atomic force microscopy. J. Appl. Phys. 80(11), 6081–6090 (1996)

    Article  Google Scholar 

  17. Hamaker, H.: The London—Van de waals attraction between spherical particles. Physica IV(10), 1058–1072 (1937)

    Article  Google Scholar 

  18. Jacobsen, S., Ko, H., Iversen, E., Davis, C.: Control strategies for tendon-driven manipulators. In: IEEE Conference on Robotics and Automation (1989)

  19. Lee, Y.-H., Lee, J.-J.: Modeling of the dynamics of tendon-driven robotic mechanisms with flexible tendons. Mech. Mach. Theory 38, 1431–1447 (2003)

    Article  MATH  Google Scholar 

  20. Kobayashi, H., Ozawa, R.: Adaptive neural network control of tendon-driven mechanisms with elastic tendons. Automatica 39, 1509–1519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ma, S., Watanabe, M.: Minimum-time control of coupled tendon-driven manipulators. Adv. Robot. 15(4), 409–427 (2001)

    Article  Google Scholar 

  22. Stevens, J., Buckner, G.: Intelligent control of a micro-manipulator actuated with shape memory alloy tendons. In: Proceedings of SPIE—The International Society for Optical Engineering, vol. 5049, pp. 56–64 (2003)

  23. Slotine, J.-J., Li, W.: Applied Nonlinear Control. Englewood Cliffs, Prentice-Hall (1991)

    MATH  Google Scholar 

  24. Tzes, A., Peng, Y.-P., Guthy, J.: Genetic-based fuzzy clustering for dc-motor friction identification and compensation. IEEE Trans. Control Syst. Technol. 6(4), 462–472 (1998)

    Article  Google Scholar 

  25. Armstrong-Helouvry, B., Dupont, P., de Wit, C.C.: A survey of analysis tools and compensation methods for the control of machines with friction. Automatica 30, 1083–1138 (1994)

    Article  MATH  Google Scholar 

  26. Corwin, A.-D., DeBoer, M.-P.: Effect of adhesion on dynamic and static friction in surface micromachining. Appl. Phys. Lett. 84(13), 2451 (2004)

    Article  Google Scholar 

  27. Zhao, Y.-P., Wang, L.-S., Yu, T.-X.: Mechanics of adhesion in mems—a review. J. Adhes. Sci. Technol. 17(4), 519–546 (2003)

    Article  Google Scholar 

  28. Hariri, A., Zu, J.-W., Mrad, R.-B.: Modeling of surface forces between micron-sized objects in dry conditions. In: International Conference on MEMS, NANO and Smart Systems, pp. 623–628 (2004)

  29. Bouhacina, T., Aime, J.-P., Gauthier, S., Michel, D.: Tribological behavior of a polymer grafter on silanized silica probed with a nanotip. Phys. Rev. B 56, 7694–7703 (1997)

    Article  Google Scholar 

  30. Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., Guntherodt, H.-J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84 (2000)

  31. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brune, H.: Interaction potential and hopping dynamics governing sliding friction. Phys. Rev. Lett. 91(8), 084502–14 (2003)

    Article  Google Scholar 

  32. Tao, Z., Bhushan, B.: Velocity dependence and rest time effect on nanoscale friction of ultrathin films at high sliding velocities. J. Vac. Sci. Technol., A, Vac. Surf. Films 25, 1267–1274 (2007)

    Article  Google Scholar 

  33. Niederberger, S., Gracias, D.-H., Komvopoulos, K., Somorjai, G.-A.: Transitions from nanoscale to microscale dynamic friction mechanisms on polyethylene and silicon surfaces. J. Appl. Phys. 87, 3143–3150 (2000)

    Article  Google Scholar 

  34. Yoon, E.-S., Singh, R.-A., Oh, H.-J., Kong, H.: The effect of contact area on nano/micro-scale friction. Wear 259(7–12), 1424–1431 (2005)

    Article  Google Scholar 

  35. Tambe, N.-S., Bhushan, B.: Scale dependence of micro/nano-friction and adhesion of mems/nems materials, coatings and lubricants. Nanotechnology 15, 1561–1570 (2004)

    Article  Google Scholar 

  36. Bora, C.-K., Flater, E.-E., Street, M.-D., Redmond, J.-M., Starr, M.-J., Carpick, R.-W., Plesha, M.-E.: Multiscale roughness and modeling of mems interfaces. Tribol. Lett. 19, 37–48 (2005)

    Article  Google Scholar 

  37. Tao, S.T.Q., Shizhu, W.: Micro-friction and adhesion measurements for si wafer and tib 2 thin film. Tsinghua Sci. Technol. 12, 261–268, ISSN:1007-0214 05/18 (2007)

    Article  Google Scholar 

  38. Bhushan, B.: Adhesion and stiction: mechanisms, measurement techniques, and methods for reduction. J. Vac. Sci. Technol., B Microelectron. Nanometer Struct. 21, 2262–2296 (2003)

    Article  Google Scholar 

  39. Bhushan, B.: Contact mechanics of rough surfaces in tribology: multiple asperity contact. Tribol. Lett. 4(1), 1–35 (1998)

    Article  Google Scholar 

  40. Koinkar, V.-N., Bhushan, B.: Effect of scan size and surface roughness on microscale friction measurements. J. Appl. Phys. 81, 2472–2479 (1997)

    Article  Google Scholar 

  41. Bhushan, B., Liu, H., Hsu, S.-M.: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects. J. Tribol. 126, 583–590 (2004)

    Article  Google Scholar 

  42. Stachowiak, G.-W., Batchelor, A.-W.: Engineering Tribology. Butterworth-Heinemann (2001)

  43. Marinescu, J.-D., Rowe, W.-B., Dimitrov, B., Inasaki, I.: Tribology of Abrasive Machining Processes. Norwich, William Andrew Publishing (2004)

    Google Scholar 

  44. Deshpande, V.-S., Needleman, A., der Giessenn, E.V.: Discrete dislocation plasticity analysis of static friction. Acta Mater. 52, 3135–3149 (2004)

    Article  Google Scholar 

  45. Gerberich, W.-W., Cordill, M.-J.: Physics of adhesion. Rep. Prog. Phys. 69, 2157–2203 (2006)

    Article  Google Scholar 

  46. Greenwood, J.-A., Williamson, J.-B.-P.: Contact of nominally flat surfaces. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 295, pp. 300–319 (1966)

  47. Nosonovsky, M.: Modelling size, load and velocity effect on friction at micro/nanoscale. Int. J. Surf. Sci. Eng. 1(1), 22–37 (2007)

    Article  Google Scholar 

  48. Slotine, J.-J., Li, W.: On the adaptive control of robot manipulators. Int. J. Rob. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  49. Sage, H., DeMathelin, M., Ostertag, E.: Robust control of robot manipulators: a survey. Int. J. Control 72(16), 1498–1522 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Middleton, R., Goodwin, G.: Adaptive computed torque control for rigid link manipulators. Syst. Control. Lett. 10, 9–16 (1988)

    Article  MATH  Google Scholar 

  51. Slotine, J., Sastry, S.: Tracking control of nonlinear systems using sliding surfaces with application to robot manipulators. Int. J. Control 38, 465–492 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  52. Pang, X., Volinsky, A.-A., Gao, K.: Moisture Effects on Nanowear of Gold Films, vol. 802 (2008). arXiv:0802.2384

  53. Carpick, R.-W., Ogletree, D.-F., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70(12), 1548–1550 (1997)

    Article  Google Scholar 

  54. Carpick, R.-W., Agrait, N., Ogletree, D.-F., Salmeron, M.: Variation of the interfacial shear strength and adhesion of a nanometer-sized contact. Langmuir 12(13), 3334–3340 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Tzes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsoukalas, A., Tzes, A. Modelling and Adaptive Control of Nanowire-Driven Micromanipulators. J Intell Robot Syst 62, 419–450 (2011). https://doi.org/10.1007/s10846-010-9452-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10846-010-9452-5

Keywords

Navigation