Speaker verification using excitation source information | International Journal of Speech Technology Skip to main content
Log in

Speaker verification using excitation source information

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

In this work we develop a speaker recognition system based on the excitation source information and demonstrate its significance by comparing with the vocal tract information based system. The speaker-specific excitation information is extracted by the subsegmental, segmental and suprasegmental processing of the LP residual. The speaker-specific information from each level is modeled independently using Gaussian mixture modeling—universal background model (GMM-UBM) modeling and then combined at the score level. The significance of the proposed speaker recognition system is demonstrated by conducting speaker verification experiments on the NIST-03 database. Two different tests, namely, Clean test and Noisy test are conducted. In case of Clean test, the test speech signal is used as it is for verification. In case of Noisy test, the test speech is corrupted by factory noise (9 dB) and then used for verification. Even though for Clean test case, the proposed source based speaker recognition system still provides relatively poor performance than the vocal tract information, its performance is better for Noisy test case. Finally, for both clean and noisy cases, by providing different and robust speaker-specific evidences, the proposed system helps the vocal tract system to further improve the overall performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Ananthapadmanabha, T. V., & Yegnanarayana, B. (1979). Epoch extraction from linear prediction residual for identification of closed glottis interval. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-27, 309–319.

    Article  Google Scholar 

  • Atal, B. S. (1974). Effectiveness of linear prediction characteristics of the speech wave for automatic speaker identification and verification. The Journal of the Acoustical Society of America, 55(6), 1304–1312.

    Article  Google Scholar 

  • Atal, B. S. (1976). Automatic recognition of speakers from their voices. Proceedings of the IEEE, 64(4), 460–475.

    Article  Google Scholar 

  • Campbell, J. P. Jr. (1997). Speaker recognition: a tutorial. Proceedings of the IEEE, 85(9), 1437–1462.

    Article  Google Scholar 

  • Chan, W. N., Zheng, N., & Lee, T. (2007). Discrimination power of vocal source and vocal tract related features for speaker segmentations. IEEE Transactions on Audio, Speech and Signal Processing, 15(6), 1884–1892.

    Article  Google Scholar 

  • Davis, S. B., & Mermelstein, P. (1980). Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(28), 357–366.

    Article  Google Scholar 

  • Deller, J. R. Jr., Hansen, J. H. L., & Proakis, J. G. (2000). Discrete-Time Processing of Speech Signal (2nd edn.). New York: IEEE Press.

    Google Scholar 

  • Falk, T. H., & Chan, W.-Y. (2010). Modulation spectral features for robust far-field speaker identification. IEEE Transactions on Audio, Speech, and Language Processing, 18(1), 90–100.

    Article  Google Scholar 

  • Furui, S. (1981). Cepstral analysis technique for automatic speaker verification. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(2), 254–272.

    Article  Google Scholar 

  • Gish, H., & Schmidt, M. (1994). Text- independent speaker identification. IEEE Signal Processing Magazine, 11, 18–32.

    Article  Google Scholar 

  • Hall, J. J., & Srihari, S. N. (1994). Decision combination in multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16, 66–75.

    Article  Google Scholar 

  • Hayakawa, S., Takeda, K., & Itakura, F. (1997). Speaker identification using harmonic structure of lp-residual spectrum. In Lecture notes: Vol. 1206. Biometric personal Authentification (pp. 253–260). Berlin: Springer.

    Google Scholar 

  • Iseli, M. R., & Alwan, A. (2000). Inter- and intra-speaker variability of glottal flow derivative. In Int. conf. on spoken language processing (ICSLP, 2000), Beijing, China.

    Google Scholar 

  • Kinnunen, T., & Li, H. (2009). An overview of text-independent speaker recognition: from features to supervectors. Speech Communication, 52, 12–40.

    Article  Google Scholar 

  • Kittler, J., Hatef, M., Duin, R. P. W., & Matas, J. (1998). On combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(3), 226–239.

    Article  Google Scholar 

  • Linguistic Data Consortium (2004). Switchboard cellular part 2 audio. http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2004S07.

  • Makhoul, J. (1975). Linear prediction: a tutorial review. Proceedings of the IEEE, 63(4), 561–580.

    Article  Google Scholar 

  • Martin, A., Doddington, G., Kamm, T., Ordowski, M., & Przybocki, M. (1997). The DET curve in assessment of detection task performance. In Proc. Eur. conf. on speech communication technology, Rhodes, Greece (Vol. 4, pp. 1895–1898).

    Google Scholar 

  • Mary, L., & Yegnanarayana, B. (2008). Extraction and representation of prosodic features for language and speaker recognition. Speech Communication, 50, 782–796.

    Article  Google Scholar 

  • Mashao, D. J., & Skosan, M. (2006). Combining classifier decisions for robust speaker identification. Pattern Recognition, 39, 147–155.

    Article  Google Scholar 

  • Murthy, K. S. R., & Yegnanarayana, B. (2008). Epoch extraction from speech signal. IEEE Transactions on Audio, Speech, and Language Processing, 16(8), 1602–1613.

    Article  Google Scholar 

  • Murty, K. S. R., & Yegnanarayana, B. (2006). Combining evidence from residual phase and MFCC features for speaker recognition. IEEE Signal Processing Letters, 13(1), 52–55.

    Article  Google Scholar 

  • Murty, K. S. R., Prasanna, S. R. M., & Yegnanarayana, B. (2004). Speaker specific information from residual phase. In Int. conf. on signal proces. and comm. (SPCOM).

    Google Scholar 

  • Naylor, P. A., Kounoudes, A., Gudnason, J., & Brookes, M. (2007). Estimation of glottal closure instants in voiced speech using the dypsa algorithm. IEEE Transactions on Audio, Speech, and Language Processing, 15(1), 34–43.

    Article  Google Scholar 

  • Nist speaker recognition evaluation plan (2003). In Proc. NIST speaker recognition workshop, College Park, MD.

    Google Scholar 

  • Padmanabhan, R., & Murthy, H. A. (2010). Acoustic feature diversity and speaker verification. In INTERSPEECH 2010, Sept., Makuhari, Chiba, Japan (pp. 2010–2013).

    Google Scholar 

  • Pati, D., & Prasanna, S. R. M. (2008). Non-parametric vector quantization of excitation source information for speaker recognition. In Proc. IEEE TENCON, 2008 (pp. 1–4).

    Google Scholar 

  • Pati, D., & Prasanna, S. R. M. (2010). Speaker information from subband energies of linear prediction residual. In Proc. NCC 2010 (pp. 1–4).

    Google Scholar 

  • Pati, D., & Prasanna, S. R. M. (2011a). Subsegmental, segmental and suprasegmental processing of linear prediction residual for speaker information. International Journal of Speech Technology, 14(1), 49–63.

    Article  Google Scholar 

  • Pati, D., & Prasanna, S. R. M. (2011b, accepted). Speaker recognition using suprasegmental level excitation information. International Journal of Information and Communication Technology (IJICT).

  • Pati, D., & Prasanna, S. R. M. (2012a, in press). Processing of linear prediction residual in spectral and cepstral domains for speaker information. In Communicated to SADHANA (Springer).

  • Pati, D., & Prasanna, S. R. M. (2012b, in press). A comparative study of explicit and implicit modeling of subsegmental speaker-specific excitation source information. In Communicated to SADHANA (Springer).

  • Plumpe, M. D., Quatieri, T. F., & Reynolds, D. A. (1999). Modelling of glottal flow derivative waveform with application to speaker identification. IEEE Transactions on Speech and Audio Processing, 7(5), 569–586.

    Article  Google Scholar 

  • Prasanna, S. R. M., Gupta, C. S., & Yegnanarayana, B. (2006). Extraction of speaker-specific excitation information from linear prediction residual of speech. Speech Communication, 48, 1243–1261.

    Article  Google Scholar 

  • Rabiner, L. R., & Schafer, R. W. (1978). Digital processing of speech signals. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Reynolds, D. A. (1994). Experimental evaluation of features for robust speaker identification. IEEE Transactions on Speech and Audio Processing, 2(4), 639–643.

    Article  Google Scholar 

  • Reynolds, D. A. (1995). Speaker identification and verification using Gaussian mixture speaker models. Speech Communication, 17, 91–108.

    Article  Google Scholar 

  • Reynolds, D. A., & Rose, R. C. (1995a). Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Transactions on Speech and Audio Processing, 3(1), 72–83.

    Article  Google Scholar 

  • Reynolds, D. A., & Rose, R. C. (1995b). Robust text-independent speaker identification using Gaussian mixture speaker models. IEEE Transactions on Speech and Audio Processing, 3(1), 4–17.

    Article  Google Scholar 

  • Reynolds, D. A., Quatieri, T. F., & Dunn, R. (2000). Speaker verification using adapted Gaussian mixture models. Digital Signal Processing, 10, 19–41.

    Article  Google Scholar 

  • Thevenaz, P., & Hugli, H. (1995). Usefulness of the LPC-residue in text-independent speaker verification. Speech Communication, 17, 145–157.

    Article  Google Scholar 

  • Veldhuish, R. (1998). A computationally efficient alternative for the Liljencrants-Fant model and its perceptual evaluation. The Journal of the Acoustical Society of America, 103(1), 566–571.

    Article  Google Scholar 

  • Wang, N., Ching, P. C., & Lee, T. (2009). Exploration of vocal excitation modulation features for speaker recognition. In Proc. INTERSPEECH-09, Brighton, UK (pp. 892–895).

    Google Scholar 

  • Xu, L., Krzyzak, A., & Suen, C. Y. (1992). Methods of combining multiple classifiers and their applications to handwriting. IEEE Transactions on Systems, Man, and Cybernetics, 22(3), 412–435.

    Article  Google Scholar 

  • Yegnanarayana, B., & Veldhuis, R. N. J. (1998). Extraction of vocal-tract system characteristics from speech signals. IEEE Transactions on Speech and Audio Processing, 6(4), 313–327.

    Article  Google Scholar 

  • Yegnanarayana, B., Reddy, K. S., & Kishore, S. P. (2001). Source and systsem feature for speaker recognition using AANN Models. In Proc. IEEE int. con. acoust. speech and signal process, Salt Lake City, UT, USA, May (pp. 409–412).

    Google Scholar 

  • Yegnenarayana, B., & Murthy, K. S. R. (2009). Event based instantaneous fundamental frequency estimation from speech signals. IEEE Transactions on Audio, Speech, and Language Processing, 17(4), 614–624.

    Article  Google Scholar 

  • Zheng, N., Lee, T., & Ching, P. C. (2007). Integration of complimentary acoustic features for speaker recognition. IEEE Signal Processing Letters, 14(3), 181–184.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Mahadeva Prasanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pati, D., Mahadeva Prasanna, S.R. Speaker verification using excitation source information. Int J Speech Technol 15, 241–257 (2012). https://doi.org/10.1007/s10772-012-9137-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-012-9137-5

Keywords

Navigation