A Science Driven Production Cyberinfrastructure—the Open Science Grid | Journal of Grid Computing Skip to main content
Log in

A Science Driven Production Cyberinfrastructure—the Open Science Grid

  • Published:
Journal of Grid Computing Aims and scope Submit manuscript

Abstract

This article describes the Open Science Grid, a large distributed computational infrastructure in the United States which supports many different high-throughput scientific applications, and partners (federates) with other infrastructures nationally and internationally to form multi-domain integrated distributed systems for science. The Open Science Grid consortium not only provides services and software to an increasingly diverse set of scientific communities, but also fosters a collaborative team of practitioners and researchers who use, support and advance the state of the art in large-scale distributed computing. The scale of the infrastructure can be expressed by the daily throughput of around seven hundred thousand jobs, just under a million hours of computing, a million file transfers, and half a petabyte of data movement. In this paper we introduce and reflect on some of the OSG capabilities, usage and activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pordes, R.: Challenges facing production Grids. In: High Performance Computing and Grids in Action. Advances in Parallel Computing, 16th edn., pp. 506–521. IOS, Amsterdam (2008)

  2. The ATLAS Collaboration and Aad, G., et al.: The ATLAS experiment at the CERN large Hadron collider. Journal of Instrumentation 3, JINST 3 S0800 (2008). doi:10.1088/1748-0221/3/08/S08003

  3. The CMS Collaboration, Chatrchyan, S., et al.: The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004

  4. LIGO and the Detection of Gravitational Waves, Physics Today (1999)

  5. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experience. Concurrency - Practice and Experience 17(2–4), 323–356 (2005)

    Article  Google Scholar 

  6. Globus Toolkit Version 4: Software for service-oriented systems. I. Foster. In: IFIP International Conference on Network and Parallel Computing, Springer LNCS 3779, pp. 2–13 (2006)

  7. Knispel*†, B., et al.: Pulsar discovery by global volunteer computing. Science 329(5997), 1305 (2010, September 10). doi:10.1126/science.1195253

    Article  Google Scholar 

  8. Pordes, R. for the Open Science Grid Executive Board: Analysis of the current use, benefit, and value of the Open Science Grid. J. Phys.: Conf. Ser. 219, 062024 (2010). doi:10.1088/1742-6596/219/6/062024

    Article  Google Scholar 

  9. Cortiana, G. on behalf of the ATLAS Collaboration: e.g. First results on top-quarks from ATLAS, 6 pp. (2010). e-Print: arXiv:1010.0538

  10. Martinez Outschoorn, V. for the ATLAS Collaboration: W and Z production in pp Collisions at 7 TeV with the ATLAS experiment at the LHC. ATL-PHYS-PROC-2010-102 (2010)

  11. Aaltonen, T., et al., The CDF Collaboration: e.g. Inclusive search for standard model Higgs Boson production in the WW decay channel using the CDF II detector. Phys. Rev. Lett. 104, 061803 (2010). arXiv:1001.4468

    Article  Google Scholar 

  12. Aaltonen, T., et al., The CDF Collaboration: e.g. Observation of single top Quark production and measurement of ∣V(tb)∣ with CDF. Phys. Rev. D (2010, April 7). Fermilab-Pub-10-063-E. arXiv:1004.1181

  13. The CMS Collaboration: e.g. Higgs Boson that decays into τ pairs. Phys. Rev. Lett. 104, 151801 (2010)

    Article  Google Scholar 

  14. Rizzi, A. for the CMS Collaboration: e.g. Early b physics at CMS. (2010) e-Print: arXiv:1011.0634

  15. D0 Collaboration: e.g. Search for the standard model Higgs Boson in the ZH→vvbb channel in 5.2 fb-1 of pbarp collisions at sqrt(s) = 1.96 TeV. Phys. Rev. Lett. 104, 071801 (2010)

    Article  Google Scholar 

  16. D0 Collaboration: e.g. Search for Higgs Boson production in dilepton and missing energy final states with 5.4 fb-1 of pbarp collisions at sqrt(s) = 1.96 TeV. Phys. Rev. Lett. 104, 061804 (2010)

    Article  Google Scholar 

  17. The LIGO scientific Collaboration: e.g. Searches for gravitational waves from known pulsars with S5 LIGO data. Astrophys. J. 713, 671 (2010)

    Article  Google Scholar 

  18. e.g. Search for gravitational-wave inspiral signals associated with short gamma-ray bursts during LIGO’s fifth and Virgo’s first science run. Astrophys. J. 715, 1453 (2010)

    Google Scholar 

  19. The STAR Collaboration: e.g. Charged and strange hadron elliptic flow in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. Phys. Rev. C 81, 44902 (2010)

    Article  Google Scholar 

  20. The STAR collaboration: Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. Phys. Rev. D 80, 111108 (2009)

    Article  Google Scholar 

  21. Zhao, F., Li, S.C., Sterner, B.W., Xu, J.: Discriminative learning for protein conformation sampling. PROTEINS: Structure, Function and Bioinformatics 73(1), 228–240 (2008)

    Article  Google Scholar 

  22. Zhao, F., Peng, J., DeBartolo, J., Freed, K.F., Sosnick, T.R., Xu, J.: A probabilistic and continuous model of protein conformational space for templatefree modeling. J. Comput. Biol. 17(6), 783–798 (2010). doi:10.1089/cmb.2009.0235

    Article  MathSciNet  Google Scholar 

  23. Jha, P.K., Solis, F.J., de Pablo, J.J., de la Cruz, M.O.: Nonlinear effects in the nanophase segregation of polyelectrolyte gels. Macromolecules 42(16), 6284–6289 (2009)

    Article  Google Scholar 

  24. Rosato, A.D., Dybenko, O., Horntrop, D.J., Ratnaswamy, V., Kondic, L.: Microstructure evolution in density relaxation by tapping. Phys. Rev. E. 81, 061301 (2010)

    Article  Google Scholar 

  25. Schultz, A.J., Kofke, D.A.: Sixth, seventh and eighth virial coefficients of the Lennard–Jones model. Mol. Phys. 107(21), 2309–2318 (2009)

    Article  Google Scholar 

  26. Strachan, A., Klimeck, G., Lundstrom, M.: Cyber-enabled simulations in nanoscale science and engineering. Comput. Sci. Eng. 12(2), 12–17 (2010). doi:10.1109/MCSE.2010.38

    Article  Google Scholar 

  27. Abbasi, R., et al., IceCube collaboration: Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector. Phys. Rev. Lett. 102, 201302 (2009)

    Article  Google Scholar 

  28. Aguilar-Arevalo, A.A., et al.: First measurement of the muon neutrino charged current quasielastic double differential cross section. Phys. Rev. D 81, 092005 (2010). arXiv:1002:2680 [hep-ex]

    Article  Google Scholar 

  29. Garzoglio, G., et al.: XACML profile and implementation for authorization interoperability between OSG and EGEE. J. Phys. Conf. Ser. 219, 062014 (2010). doi:10.1088/1742-6596/219/6/062014

    Article  Google Scholar 

  30. OSG Executive Board: The open science grid J. Phys. Conf. Ser. 78, 012057

    Google Scholar 

  31. Altunay, M., Leyffer, S., Linderoth, J.T., Xie, Z.: Optimal response to attacks on The Open Science Grid. Elsevier Editorial System(tm) for Computer Networks COMNET-D-09-3466R1

  32. Roy, A., and the OSG Consortium: Building and testing a production quality Grid software distribution for the Open Science Grid. J. Phys. Conf. Ser., Issue 180(1), 012052 (2009). doi:10.1088/1742-6596/180/1/012052

    Article  Google Scholar 

  33. Floros, E., Loomis, C.: Interactive and Real-Time Applications on the EGEE Grid Infrastructure, Remote Instrumentation and Virtual Laboratories. Springer, US. doi:10.1007/978-1-4419-5597-5

  34. Vanderster, D.C., et al.: Ganga: user-friendly Grid job submission and management tool for LHC and beyond. J. Phys. Conf. Ser. 219, 072022 (2010). doi:10.1088/1742-6596/219/7/072022

    Article  Google Scholar 

  35. Wildish, T., Huang, C.-H.: PhEDEx Data Service Ricky Egeland. J. Phys. Conf. Ser. 219, 062010 (2010). doi:10.1088/1742-6596/219/6/062010

    Article  Google Scholar 

  36. Sfiligoi, I., et al.: glideinWMS—a generic pilot-based workload management system. J. Phys. Conf. Ser. 119, 062044 (2008). doi:10.1088/1742-6596/119/6/062044

    Article  Google Scholar 

  37. Couvares, P., Kosar, T., Roy, A., Weber, J., Wenger, K.: Workflow in Condor. In: Taylor, I., Deelman, E., Gannon, D., Shields, M. (eds.) In Workflows for e-Science. Springer, ISBN: 1-84628-519-4 (2007)

  38. Damjanovi, A., et al.: Open Science Grid study of the coupling between conformation and water content in the interior of a protein. J. Chem. Inf. Model. 48(10), 2021–2029 (2008). doi:10.1021/ci800263c

    Article  Google Scholar 

  39. Murphy, M.A., Abraham, L., Fenn, M., Goasguen, S.: Autonomic clouds on the Grid. J. Grid Computing 8(1), 1–18 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Ruth Pordes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altunay, M., Avery, P., Blackburn, K. et al. A Science Driven Production Cyberinfrastructure—the Open Science Grid. J Grid Computing 9, 201–218 (2011). https://doi.org/10.1007/s10723-010-9176-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10723-010-9176-6

Keywords

Navigation