Abstract
This article describes the Open Science Grid, a large distributed computational infrastructure in the United States which supports many different high-throughput scientific applications, and partners (federates) with other infrastructures nationally and internationally to form multi-domain integrated distributed systems for science. The Open Science Grid consortium not only provides services and software to an increasingly diverse set of scientific communities, but also fosters a collaborative team of practitioners and researchers who use, support and advance the state of the art in large-scale distributed computing. The scale of the infrastructure can be expressed by the daily throughput of around seven hundred thousand jobs, just under a million hours of computing, a million file transfers, and half a petabyte of data movement. In this paper we introduce and reflect on some of the OSG capabilities, usage and activities.
Similar content being viewed by others
References
Pordes, R.: Challenges facing production Grids. In: High Performance Computing and Grids in Action. Advances in Parallel Computing, 16th edn., pp. 506–521. IOS, Amsterdam (2008)
The ATLAS Collaboration and Aad, G., et al.: The ATLAS experiment at the CERN large Hadron collider. Journal of Instrumentation 3, JINST 3 S0800 (2008). doi:10.1088/1748-0221/3/08/S08003
The CMS Collaboration, Chatrchyan, S., et al.: The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). doi:10.1088/1748-0221/3/08/S08004
LIGO and the Detection of Gravitational Waves, Physics Today (1999)
Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the condor experience. Concurrency - Practice and Experience 17(2–4), 323–356 (2005)
Globus Toolkit Version 4: Software for service-oriented systems. I. Foster. In: IFIP International Conference on Network and Parallel Computing, Springer LNCS 3779, pp. 2–13 (2006)
Knispel*†, B., et al.: Pulsar discovery by global volunteer computing. Science 329(5997), 1305 (2010, September 10). doi:10.1126/science.1195253
Pordes, R. for the Open Science Grid Executive Board: Analysis of the current use, benefit, and value of the Open Science Grid. J. Phys.: Conf. Ser. 219, 062024 (2010). doi:10.1088/1742-6596/219/6/062024
Cortiana, G. on behalf of the ATLAS Collaboration: e.g. First results on top-quarks from ATLAS, 6 pp. (2010). e-Print: arXiv:1010.0538
Martinez Outschoorn, V. for the ATLAS Collaboration: W and Z production in pp Collisions at 7 TeV with the ATLAS experiment at the LHC. ATL-PHYS-PROC-2010-102 (2010)
Aaltonen, T., et al., The CDF Collaboration: e.g. Inclusive search for standard model Higgs Boson production in the WW decay channel using the CDF II detector. Phys. Rev. Lett. 104, 061803 (2010). arXiv:1001.4468
Aaltonen, T., et al., The CDF Collaboration: e.g. Observation of single top Quark production and measurement of ∣V(tb)∣ with CDF. Phys. Rev. D (2010, April 7). Fermilab-Pub-10-063-E. arXiv:1004.1181
The CMS Collaboration: e.g. Higgs Boson that decays into τ pairs. Phys. Rev. Lett. 104, 151801 (2010)
Rizzi, A. for the CMS Collaboration: e.g. Early b physics at CMS. (2010) e-Print: arXiv:1011.0634
D0 Collaboration: e.g. Search for the standard model Higgs Boson in the ZH→vvbb channel in 5.2 fb-1 of pbarp collisions at sqrt(s) = 1.96 TeV. Phys. Rev. Lett. 104, 071801 (2010)
D0 Collaboration: e.g. Search for Higgs Boson production in dilepton and missing energy final states with 5.4 fb-1 of pbarp collisions at sqrt(s) = 1.96 TeV. Phys. Rev. Lett. 104, 061804 (2010)
The LIGO scientific Collaboration: e.g. Searches for gravitational waves from known pulsars with S5 LIGO data. Astrophys. J. 713, 671 (2010)
e.g. Search for gravitational-wave inspiral signals associated with short gamma-ray bursts during LIGO’s fifth and Virgo’s first science run. Astrophys. J. 715, 1453 (2010)
The STAR Collaboration: e.g. Charged and strange hadron elliptic flow in Cu+Cu collisions at sqrt(s) = 62.4 and 200 GeV. Phys. Rev. C 81, 44902 (2010)
The STAR collaboration: Longitudinal double-spin asymmetry and cross section for inclusive neutral pion production at midrapidity in polarized proton collisions at sqrt(s) = 200 GeV. Phys. Rev. D 80, 111108 (2009)
Zhao, F., Li, S.C., Sterner, B.W., Xu, J.: Discriminative learning for protein conformation sampling. PROTEINS: Structure, Function and Bioinformatics 73(1), 228–240 (2008)
Zhao, F., Peng, J., DeBartolo, J., Freed, K.F., Sosnick, T.R., Xu, J.: A probabilistic and continuous model of protein conformational space for templatefree modeling. J. Comput. Biol. 17(6), 783–798 (2010). doi:10.1089/cmb.2009.0235
Jha, P.K., Solis, F.J., de Pablo, J.J., de la Cruz, M.O.: Nonlinear effects in the nanophase segregation of polyelectrolyte gels. Macromolecules 42(16), 6284–6289 (2009)
Rosato, A.D., Dybenko, O., Horntrop, D.J., Ratnaswamy, V., Kondic, L.: Microstructure evolution in density relaxation by tapping. Phys. Rev. E. 81, 061301 (2010)
Schultz, A.J., Kofke, D.A.: Sixth, seventh and eighth virial coefficients of the Lennard–Jones model. Mol. Phys. 107(21), 2309–2318 (2009)
Strachan, A., Klimeck, G., Lundstrom, M.: Cyber-enabled simulations in nanoscale science and engineering. Comput. Sci. Eng. 12(2), 12–17 (2010). doi:10.1109/MCSE.2010.38
Abbasi, R., et al., IceCube collaboration: Limits on a muon flux from neutralino annihilations in the Sun with the IceCube 22-string detector. Phys. Rev. Lett. 102, 201302 (2009)
Aguilar-Arevalo, A.A., et al.: First measurement of the muon neutrino charged current quasielastic double differential cross section. Phys. Rev. D 81, 092005 (2010). arXiv:1002:2680 [hep-ex]
Garzoglio, G., et al.: XACML profile and implementation for authorization interoperability between OSG and EGEE. J. Phys. Conf. Ser. 219, 062014 (2010). doi:10.1088/1742-6596/219/6/062014
OSG Executive Board: The open science grid J. Phys. Conf. Ser. 78, 012057
Altunay, M., Leyffer, S., Linderoth, J.T., Xie, Z.: Optimal response to attacks on The Open Science Grid. Elsevier Editorial System(tm) for Computer Networks COMNET-D-09-3466R1
Roy, A., and the OSG Consortium: Building and testing a production quality Grid software distribution for the Open Science Grid. J. Phys. Conf. Ser., Issue 180(1), 012052 (2009). doi:10.1088/1742-6596/180/1/012052
Floros, E., Loomis, C.: Interactive and Real-Time Applications on the EGEE Grid Infrastructure, Remote Instrumentation and Virtual Laboratories. Springer, US. doi:10.1007/978-1-4419-5597-5
Vanderster, D.C., et al.: Ganga: user-friendly Grid job submission and management tool for LHC and beyond. J. Phys. Conf. Ser. 219, 072022 (2010). doi:10.1088/1742-6596/219/7/072022
Wildish, T., Huang, C.-H.: PhEDEx Data Service Ricky Egeland. J. Phys. Conf. Ser. 219, 062010 (2010). doi:10.1088/1742-6596/219/6/062010
Sfiligoi, I., et al.: glideinWMS—a generic pilot-based workload management system. J. Phys. Conf. Ser. 119, 062044 (2008). doi:10.1088/1742-6596/119/6/062044
Couvares, P., Kosar, T., Roy, A., Weber, J., Wenger, K.: Workflow in Condor. In: Taylor, I., Deelman, E., Gannon, D., Shields, M. (eds.) In Workflows for e-Science. Springer, ISBN: 1-84628-519-4 (2007)
Damjanovi, A., et al.: Open Science Grid study of the coupling between conformation and water content in the interior of a protein. J. Chem. Inf. Model. 48(10), 2021–2029 (2008). doi:10.1021/ci800263c
Murphy, M.A., Abraham, L., Fenn, M., Goasguen, S.: Autonomic clouds on the Grid. J. Grid Computing 8(1), 1–18 (2010)
Author information
Authors and Affiliations
Consortia
Corresponding author
Rights and permissions
About this article
Cite this article
Altunay, M., Avery, P., Blackburn, K. et al. A Science Driven Production Cyberinfrastructure—the Open Science Grid. J Grid Computing 9, 201–218 (2011). https://doi.org/10.1007/s10723-010-9176-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10723-010-9176-6