Investigating antecedents of technology acceptance of initial eCRM users beyond generation X and the role of self-construal | Electronic Commerce Research Skip to main content
Log in

Investigating antecedents of technology acceptance of initial eCRM users beyond generation X and the role of self-construal

  • Published:
Electronic Commerce Research Aims and scope Submit manuscript

Abstract

eCRM (electronic Customer Relationship Management) systems focus on using the web-site as the main interaction channel for businesses to simulate an old fashioned one-to-one direct relationship—high touch—with customers. In this research two distinct but related concepts, media richness from the Human Computer Interaction and Computer Mediated Communication fields and perceived interactivity from the Marketing and MIS fields, are disentangled and their unique impacts on technology acceptance variables are examined in the eCRM Acceptance Model. The present study contributes in extending the Technology Acceptance Model for the eCRM context and in establishing media richness and perceived interactivity as antecedents to perceived usefulness and perceived ease of use. Our research model integrates system perception (e.g., perceived usefulness and perceived ease of use) and subjective outcome measures (e.g., decision satisfaction) in a single model to fully understand the impact of eCRM “touch” design perceived by e-customers on their intention to return after the initial visit. An experimental survey of two culture groups (independent vs. interdependent self-construal) of technology savvy, young college students reveals that culture value-orientation (e.g., self-construal) moderates the effect of decision satisfaction on behavior intention to return in our eCRM Acceptance model. Findings of this research thus have significant theoretical and managerial implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaker, J. L. (2000). Accessibility or diagnosticity? Disentangling the influence of culture on persuasion process and attitude. Journal of Consumer Research, 26, 340–357.

    Article  Google Scholar 

  2. Aaker, J. L., & Lee, A. Y. (2001). I’ seek pleasure and ‘we’ avoid pains: the role of self-regulatory goals in information processing and persuasion. Journal of Consumer Research, 28, 33–49.

    Article  Google Scholar 

  3. Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: a replication. MIS Quarterly, 16(2), 227–247.

    Article  Google Scholar 

  4. Ajzen, I. (1988). Attitudes, personality, and behavior. Chicago: Dorsey.

    Google Scholar 

  5. Albert, T. C., Goes, P. B., & Gupta, A. (2004). GIST: a model for design and management of content and interactivity of customer-centric web sites. MIS Quarterly, 28(2), 161–182.

    Google Scholar 

  6. Alter, S., Ein-Dor, P., Markus, L. M., Scott, J., & Vessey, I. (2001). Does the trend toward e-business call for changes in the fundamental concepts of information systems? A debate. Communications of the Association for Information Systems, 5, 1–42.

    Google Scholar 

  7. Arbuckle, J. L., & Wothke, W. (1999). Amos 4.0 user’s guide. Small Waters: Chicago.

    Google Scholar 

  8. Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16, 74–94.

    Article  Google Scholar 

  9. Bentler, P. M., & Bonnet, D. G. (1980). Significance tests and goodness of fit in analysis of covariance structures. Psychological Bulletin, 88, 588–606.

    Article  Google Scholar 

  10. Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In J. S. L. K. A. Bollen (Ed.). Testing structural equation models (pp. 136–162). Thousand Oaks: Sage.

    Google Scholar 

  11. Chen, Q., Griffith, D. A., & Shen, F. (2005). The effects of interactivity on cross-channel communication effectiveness. Journal of Interactive Advertising. Special Issue on Interactivity and Its Relationship to Advertising, Marketing and Communication, 5(2).

  12. Coyle, J. R., & Thorson, E. (2001). The effects of progressive levels of interactivity and vividness in web marketing sites. Journal of Advertising, 30(3), 65–77.

    Google Scholar 

  13. Crosby, L. A., & Stephens, N. (1987). Effects of relationship marketing on satisfaction, retention and prices in the life insurance industry. Journal of Marketing Research, 24, 404–411.

    Article  Google Scholar 

  14. Daft, R. L., & Lengel, R. H. (1984). Information richness: a new approach to manager information processing and organization design. In Cummings & B. Staw (Eds.), Research in organizational behavior. Greenwich: JAI.

    Google Scholar 

  15. Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media richness and structural design. Management Science, 32, 554–571.

    Google Scholar 

  16. Daft, R. L., Lengel, R. H., & Trevino, L. K. (1987). Message equivocality, media selection and manager performance. MIS Quarterly, 11, 355–364.

    Article  Google Scholar 

  17. Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340.

    Article  Google Scholar 

  18. Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982–1003.

    Google Scholar 

  19. DeLone, W. H., & McLean, E. R. (1992). Information systems success: the quest for the dependent variable. Information Systems Research, 3(1), 60–95.

    Google Scholar 

  20. Dennis, A. R., & Kinney, S. T. (1998). Testing media richness theory in the new media: the effects of cues, feedback, and task equivocality. Information Systems Research, 9(3), 256–274.

    Google Scholar 

  21. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: an introduction to theory and research. Reading: Addison-Wesley.

    Google Scholar 

  22. Friedman, T. L. (2006). The world is flat: a brief history of the twenty-first century. New York: Farrar, Straus and Giroux.

    Google Scholar 

  23. The five engines of eCRM. http://crm.ittoolbox.com/white-papers/the-five-engines-of-ecrm-1341.

  24. Gemino, A., Parker, D., & Kutzschan, A. O. (2005). Investigating coherence and multimedia effects of a technology-mediated collaborative environment. Journal of Management Information Systems, 22(3), 97–121.

    Article  Google Scholar 

  25. Gudykunst, W. B., & Ting-Toomey (1988). Culture and interpersonal communication. Newbury Park: Sage.

    Google Scholar 

  26. Haubl, G., & Trifts, V. (2000). Consumer decision making in online shopping environments: the effects of interactive decision aids. Marketing Science, 19(1), 4–21.

    Article  Google Scholar 

  27. Heeter, C. (1989). Implications of new interactive technologies for conceptualizing communication. In J. Savaggio & J. Bryant (Eds.), Media use in the information age: emerging patterns of adoption and consumer use (pp. 53–75). Hillsdale: Erlbaum.

    Google Scholar 

  28. Hoffman, D. L., & Novak, T. P. (1996). Marketing in hypermedia computer-mediated environments: conceptual foundations. Journal of Marketing, 60(3), 50–68.

    Article  Google Scholar 

  29. Hoyle, R. H., Harris, M. J., & Judd, C. M. (2002). Research methods in social relations (7th ed.). Washington: Thomson Learning.

    Google Scholar 

  30. Irwin, J. R., & McClelland, G. H. (2003). Negative consequences of dichotomizing continuous predictor variables. Journal of Marketing Research, XL(3), 366–371.

    Article  Google Scholar 

  31. Jee, J., & Lee, W.-N. (2002). Antecedents and consequences of perceived interactivity: an exploratory study. Journal of Interactive Advertising, 3, 1. Retrieved from http://jiad.org/vol3/no1/jee/index.htm.

    Google Scholar 

  32. Jöreskog, K., & Sorbom, D. (1988). LISREL 1: a guide to the program and applications. SPSS: Chicago.

    Google Scholar 

  33. Kahai, S. S., & Cooper, R. B. (2003). Exploring the core concepts of media richness theory: the impact of cue multiplicity and feedback immediacy on decision quality. Journal of Management Information Systems 2003, 20(1), 263–299.

    Google Scholar 

  34. Koufaris, M. (2002). Applying the technology acceptance model and flow theory to online customer behavior. Information Systems Research, 13(2), 205–223.

    Article  Google Scholar 

  35. Krishnan, M. S., Ramaswamy, V., Meyer, M. C., & Damien, P. (1999). Customer satisfaction for financial services: the role of products, services, and information technology. Management Science, 45(9), 1194–1209.

    Google Scholar 

  36. Kumar, V., & Reinartz, W. J. (2006). Customer relationship management: a databased approach. New York: Wiley.

    Google Scholar 

  37. Laudon, K., & Traver, C. G. (2007). E-commerce: business, technology, society (3rd ed.). Boston: Addison-Wesley.

    Google Scholar 

  38. Lee, Y., Kozar, K. A., & Larsen, K. R. T. (2003). The technology acceptance model: past, present, and future. Communications of the Association for Information Systems, 12(50), 752–780.

    Google Scholar 

  39. Li, H., Kuo, C., & Russell, M. G. (1999). The impact of perceived channel utilities, shopping orientations, and demographics on the consumer’s online buying behavior. Journal of Computer Mediated Communication, 5(2), 1–20.

    Google Scholar 

  40. Markus, H., & Kitayama, S. (1991). Culture and the self: implications for cognition, emotion and motivation. Psychological Review, 98, 224–253.

    Article  Google Scholar 

  41. Markus, M. L., Tora, K. B., Shinnawy, M., & Louise, L. S. (1993). Fragments of your communication: email, vmail, and fax. Information Society, 8, 207–226.

    Article  Google Scholar 

  42. Marsh, H. W., Balla, J. R., & McDonald, R. P. (1988). Goodness-of-fit-indexes in confirmatory factor analysis: the effect of sample size. Psychological Bulletin, 103, 391–411.

    Article  Google Scholar 

  43. Matsumoto, D. (1989). Cultural influences on the perception of emotion. Journal of Cross-Cultural Psychology, 20, 92–105.

    Article  Google Scholar 

  44. Matsumoto, D. (2003). The discrepancy between consensual-level culture and individual-level culture. Culture and Psychology, 9(1), 89–95.

    Article  Google Scholar 

  45. Morris, M., & Peng, K. (1994). Culture and cause: American and Chinese attributions for social and physical events. Journal of Personality and Social Psychology, 67, 949–971.

    Article  Google Scholar 

  46. Muhlfelder, M., Klein, U., Simon, S., & Luczak, H. (1999). Teams without trust? Investigations in the influence of video-mediated communication on the origin of trust among cooperating persons. Behaviour and Information Technology, 18(5), 349–360.

    Article  Google Scholar 

  47. Mulaik, S. A., James, L. R., Van Alstine, J., Bennett, N., Lind, S., & Stilwell, C. D. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105, 430–445.

    Article  Google Scholar 

  48. Nakata, C., & Huang, Y. (2004). Culture studies in the global marketing literature: current state and future directions. Journal of International Marketing and Marketing Research, 3, 111–131.

    Google Scholar 

  49. Ngwenyama, O. K., & Lee, A. (1997). Communication richness in electronic mail: critical social theory and the contextuality of meaning. MIS Quarterly, 21(2), 145–168.

    Article  Google Scholar 

  50. Novak, T. P., Hoffman, D. L., & Yung, Y. (2000). Measuring the customer experience in online environments: a structural modeling approach. Marketing Science, 19(1), 22–42.

    Article  Google Scholar 

  51. Oskamp, S. (1991). Attitudes and opinions (2nd ed.). Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  52. Palmer, J. W. (2002). Web site usability, design and performance metrics. Information Systems Research, 13(2), 151–157.

    Article  Google Scholar 

  53. Rafaeli, S., & Sudweeks, F. (1997). Networked interactivity. Journal of Computer Mediated Communication, 2, 4.

    Google Scholar 

  54. Realo, A. (2003). Comparison of public and academic discourses: Estonian individualism and collectivism revisited. Culture and Psychology, 9, 47–77.

    Article  Google Scholar 

  55. Rosenberg, M. J. (1960). An analysis of affective-cognitive consistency. In C. I. Hovland & M. J. Rosenberg, (Eds.), Attitude organization and change (pp. 15–64). New Haven: Yale University Press.

    Google Scholar 

  56. Short, J., Williams, E., & Christie, B. (1976). The social psychology of telecommunications. London: Wiley.

    Google Scholar 

  57. Singelis, T. M. (1994). The measurement of independent and interdependent self-construals. Personality and Social Psychology Bulletin, 20, 580–591.

    Article  Google Scholar 

  58. Singelis, T. M., Bond, M. H., Sharkey, W. F., & Lai, C. (1999). Unpacking culture’s influence on self-esteem and embarrassability. Journal of Cross-Cultural Psychology, 30(3), 315–341.

    Article  Google Scholar 

  59. Sproull, L., Subramani, M., Kiesler, S., Walker, J., & Waters, K. (1997). When the interface is a face. In B. Friedman (Ed.), CSLI lecture notes : Vol. 72. Human values and the design of computer technology (pp. 163–190). Stanford: Cambridge University Press.

    Google Scholar 

  60. Steiger, J. H. (1990). Structural model evaluation and modification: an interval estimation approach. Multivariate Behavioral Research, 25, 173–180.

    Article  Google Scholar 

  61. Steuer, J. (1992). Defining virtual reality: dimensions determining telepresence. Journal of Communication, 42(4), 73–93.

    Article  Google Scholar 

  62. Stevenson, J. S., Bruner, G. C., & Kumar, A. (2000). Webpage background and viewer attitudes. Journal of Advertising Research, 40, 29–34.

    Google Scholar 

  63. Straub, D. W. (1994). The effect of culture on IT diffusion e-mail and FAX in Japan and the US. Information Systems Research, 5(1), 23–47.

    Article  Google Scholar 

  64. Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: a test of competing models. Information Systems Research, 6(23), 144–176.

    Google Scholar 

  65. Teeni, D. (2001). Review: a cognitive-affective model of organizational communication for designing IT. MIS Quarterly, 25(2), 251–312.

    Article  Google Scholar 

  66. Teo, H.-H., Oha, L.-B., Liua, C., & Wei, K.-K. (2003). An empirical study of the effects of interactivity on web user attitude. International Journal of Human-Computer Studies, 58, 281–305.

    Article  Google Scholar 

  67. Triandis, H. C. (1989). The self and behavior in differing cultural contexts. Psychological Review, 96, 506–552.

    Article  Google Scholar 

  68. Trompenaars, F. (1998). Riding the waves of culture: understanding cultural diversity in global business. New York: McGraw-Hill.

    Google Scholar 

  69. Turban, E., King, D., Lee, J., & Viehland, D. (2006). Electronic commerce 2006: a managerial perspective. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  70. Ulijn, J., O’Hair, D., Weggeman, M., Ledlow, G., & Hall, H. T. (2000). Innovation, corporate strategy, and cultural context: what is the mission for international business communication? Journal of Business Communication, 37(3), 293–316.

    Article  Google Scholar 

  71. Upshaw, L. (1995). The keys to building cyberbrands. Advertising Age, 66(22), 18.

    Google Scholar 

  72. US Census Bureau. (2007). http://www.census.gov/econ/www/servmenu.html. Accessed 5 Feb 2007.

  73. Vehovar, V., Manfreda, K. L., & Batagelj, Z. (2001). Sensitivity of electronic commerce measurement to the survey instrument. International Journal of Electronic Commerce, 6, 31–51.

    Google Scholar 

  74. Venkatesh, V., Morris, M., Davis, G., & Davis, F. (2003). User acceptance of information technology: toward a unified view. MIS Quarterly, 27(2), 425–478.

    Google Scholar 

  75. Weick, K. E. (1979). The social psychology of organizing. Reading: Addison-Wesley.

    Google Scholar 

  76. Wikipedia. (2007). http://en.wikipedia.org/wiki/Generation_X. Accessed 5 Feb 2007.

  77. Zack, M. H. (1993). Interactivity and communication mode choices in ongoing management groups. Information System Research, 4(3), 207–239.

    Google Scholar 

  78. Zeithaml, V. A. (1981). How consumer evaluation processes differ between goods and services. In J. H. Donnelly & W. R. George (Eds.), Marketing of services (pp. 186–190). Chicago: American Marketing Association.

    Google Scholar 

  79. Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The behavioral consequences of service quality. Journal of Marketing, 60, 31–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Mei Chen.

Additional information

This research is supported by a grant from CIBER (Center for International Business Education and Research) at University of Hawaii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Chen, HM. & Kazman, R. Investigating antecedents of technology acceptance of initial eCRM users beyond generation X and the role of self-construal. Electron Commerce Res 7, 315–339 (2007). https://doi.org/10.1007/s10660-007-9009-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10660-007-9009-2

Keywords

Navigation