Abstract
We consider a code to be a subset of the vertex set of a Hamming graph. The set of \(s\)-neighbours of a code is the set of vertices, not in the code, at distance \(s\) from some codeword, but not distance less than \(s\) from any codeword. A \(2\)-neighbour transitive code is a code which admits a group \(X\) of automorphisms which is transitive on the \(s\)-neighbours, for \(s=1,2\), and transitive on the code itself. We give a classification of \(2\)-neighbour transitive codes, with minimum distance \(\delta \geqslant 5\), for which \(X\) acts faithfully on the set of entries of the Hamming graph.
Similar content being viewed by others
References
Best M.R., Brouwer A.E., Macwilliams F.J., Odlyzko A.M., Sloane N.J.A.: Bounds for binary codes of length less than 25. IEEE Trans. Inf. Theory 24, 81–93 (1978).
Bochert A.: Ueber die zahl der verschiedenen werthe, die eine function gegebener buchstaben durch vertauschung derselben erlangen kann. Math. Ann. 33(4), 584–590 (1889).
Borges J., Rifà J.: On the nonexistence of completely transitive codes. IEEE Trans. Inf. Theory 46(1), 279–280 (2000).
Borges J., Rifà J.: On linear completely regular codes with covering radius \(\rho =1\). Construction and classification. CoRR http://www.abs/0906.0550, (2009).
Borges J., Rifà J., Zinoviev V.A.: Nonexistence of completely transitive codes with error-correcting capability e > 3. IEEE Trans. Inf. Theory 47(4), 1619–1621 (2001).
Borges J., Rifà J., Zinoviev V.A.: New families of completely transitive codes and distance transitive graphs. arXiv preprint arXiv:1304.2151 (2013).
Borges J., Rifà J., Zinoviev V.A.: New families of completely regular codes and their corresponding distance regular coset graphs. Des. Codes Cryptogr. 70(1–2), 139–148 (2014).
Borges J., Rifà J., Zinoviev V.A.: On \(q\)-ary linear completely regular codes with \(\rho = 2\) and antipodal dual. Adv. Math. Commun. (AMC) 4(4), 567–578 (2010).
Brouwer A.E., Cohen A.M., Neumaier A.: Distance-Regular Graphs. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 18. Springer, Berlin (1989).
Cameron P.J.: Permutation Groups. London Mathematical Society Student Texts, vol. 45. Cambridge University Press, Cambridge (1999).
Conway J.H.: Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Clarendon Press, Oxford (1985).
Delsarte P.: An Algebraic Approach to the Association Schemes of Coding Theory. Philips Research Reports: Supplements. N. V. Philips’ Gloeilampenfabrieken (1973).
Devillers A., Giudici M., Li C.H., Pearce G., Praeger C.E.: On imprimitive rank 3 permutation groups. J. Lond. Math. Soc. 84(3), 649–669 (2011).
Dixon J.D., Mortimer B.: Permutation Groups. Graduate Texts in Mathematics, vol. 163. Springer, New York (1996).
Gillespie, N.I.: Neighbour transitivity on codes in Hamming graphs. PhD thesis, The University of Western Australia, Perth, Australia (2011)
Gillespie N.I., Praeger C.E.: Complete transitivity of the Nordstrom–Robinson codes. arXiv e-prints arXiv:1205.3878 (2012).
Gillespie N.I., Praeger C.E.: Neighbour transitivity on codes in Hamming graphs. Des. Codes Cryptogr. 67(3), 385–393 (2013).
Gillespie N.I., Praeger C.E.: Uniqueness of certain completely regular Hadamard codes. J. Comb. Theory A 120(7), 1394–1400 (2013).
Gillespie N.I., Praeger C.E.: Characterisation of a family of neighbour transitive codes. arXiv e-prints arXiv:1405.5427 (2014).
Gillespie N.I., Giudici M., Praeger C.E.: Classification of a family of completely transitive codes. arXiv preprint arXiv:1208.0393 (2012).
Gillespie N.I., Praeger C.E.: Diagonally neighbour transitive codes and frequency permutation arrays. J. Algebr. Comb. 39(3), 733–747 (2014).
Giudici M., Praeger C.E.: Completely transitive codes in Hamming graphs. Eur. J. Comb. 20(7), 647–662 (1999).
Hall Jr. M.: Note on the Mathieu group \({M}_{12}\). Arch. Math. 13(1), 334–340 (1962).
Kantor W.M.: k-Homogeneous groups. Math. Z. 124(4), 261–265 (1972).
Liebeck M.W., Praeger C.E., Saxl J.: A classification of the maximal subgroups of the finite alternating and symmetric groups. J. Algebra 111(2), 365–383 (1987).
MacWilliams F.J., Sloane N.J.A.: The Theory of Error Correcting Codes. North-Holland Mathematical Library. North-Holland, Amsterdam (1978).
Neumaier A.: Completely regular codes. Discret. Math. 106–107, 353–360 (1992).
Praeger C.E.: The inclusion problem for finite primitive permutation groups. Proc. Lond. Math. Soc. 3(1), 68–88 (1990).
Solé P.: Completely regular codes and completely transitive codes. Discret. Math. 81(2), 193–201 (1990).
Solé P.: Completely regular codes and completely transitive codes. RR-0727, (1987). \(\langle \)inria-00075825\(\rangle \).
Stinson D.R.: Combinatorial Designs: Construction and Analysis. Springer, New York (2004).
Todd J.A.: A combinatorial problem. J. Math. Phys. 12, 321–333 (1933).
van Tilborg H.C.: Uniformly Packed Codes. Technische Hogeschool, Eindhoven (1976).
Acknowledgments
The research for this paper was supported by a Grant associated with Australian Research Council Federation Fellowship FF0776186. The third author is supported by an Australian Postgraduate Award and UWA Top-up Scholarship. We would like to acknowledge the careful and detailed comments of the referees, including a simplification in the proof of Proposition 4.3.
Author information
Authors and Affiliations
Corresponding author
Additional information
This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Finite Geometries”.
Rights and permissions
About this article
Cite this article
Gillespie, N.I., Giudici, M., Hawtin, D.R. et al. Entry-faithful 2-neighbour transitive codes. Des. Codes Cryptogr. 79, 549–564 (2016). https://doi.org/10.1007/s10623-015-0069-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-015-0069-3
Keywords
- Completely transitive codes
- Regular codes
- 2-Neighbour transitive codes
- Automorphisms groups
- Hamming graph