Abstract
Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry and have a lot of concrete applications. Then, there is a lot of problems relative to this subject, like the enumeration of all its Kekulé structures (i.e. all valid configurations of double bonds). In this article, we focus our attention on two issues: the generation of benzenoid structures and the assessment of the local aromaticity. On the one hand, generating benzenoids that have certain structural and/or chemical properties (e.g. having a given number of hexagons or a particular structure from a graph viewpoint) is an interesting and important problem. It constitutes a preliminary step for studying their chemical properties. In this paper, we show that modeling this problem in Choco Solver and just letting its search engine generate the solutions is a fast enough and very flexible approach. It can allow to generate many different kinds of benzenoids with predefined structural properties by posting new constraints, saving the efforts of developing bespoke algorithmic methods for each kind of benzenoids. On the other hand, we want to assess the local aromaticity of a given benzenoid. This is a central issue in theoretical chemistry since aromaticity cannot be measured. Nowadays, computing aromaticity requires quantum chemistry calculations that are too expensive to be used on medium to large-sized molecules. In this article, we describe how constraint programming can be useful in order to assess the aromaticity of benzenoids. Moreover, we show that our method is much faster than the reference one, namely NICS.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
A radical structure arises when a system has an odd number of electrons. All electrons but one pair form bonds. The lonely electron is called a radical.
Remember that a graph \((V^{\prime },E^{\prime })\) is a sub-graph of a graph (V,E) if \(V^{\prime }\subseteq V\) and \(E^{\prime } = E \cap (V\times V).\)
Table constraints list explicitly the allowed (or disallowed) combinations of values that a specific set of variables can take [40].
BenzAI is an open source software for chemists that includes the work presented in this article (generation of benzenoid structures and estimation of the aromaticity) in a user-friendly graphical interface. More information and source code can be found at https://benzai-team.github.io/BenzAI/.
If |V1|≠|V2|, it is trivial to show that the benzenoid has no Kekulé structure.
In [13], this step is achieved by enumerating all the Kekulé structures thanks to the CSP model P1. This choice was justified by the long computation time of the determinant as well as by the fact that \(B-B[\mathcal {C}]\) was not a benzenoid. The extension of Rispoli’s result and the use of a more efficient library for the computation of the determinant allow us to make a different choice here. Note that we compared experimentally (not reported here) the determinant calculation, the solution counting for the model P1 or one of Mann and Thiel [47], and not surprisingly, the first method is the most efficient.
Available at https://benzai-team.github.io/BenzAI/.
References
Ajayakumar, M. R., Ma, J., Lucotti, A., Schellhammer, K. S., Serra, G., Dmitrieva, E., Rosenkranz, M., Komber, H., Liu, J., Ortmann, F., Tommasini, M., & Feng, X. (2021). Persistent peri-Heptacene: Synthesis and In Situ Characterization Angew. Chem. Int Ed. https://doi.org/10.1002/anie.202102757.
Allamandola, L. J., Hudgins, D. M., & Sandford, S. A. (1999). Modeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbons. The Astrophysical Journal, 511(2), L115–L119. https://doi.org/10.1086/311843.
Aumaitre, C., & Morin, J. F. (2019). Polycyclic aromatic hydrocarbons as potential building blocks for organic solar cells. The Chemical Record, 19 (6), 1142–1154. https://doi.org/10.1002/tcr.201900016.
Bauschlicher, C.W., Ricca, A., Boersma, C., & Allamandola, L. J. (2018). The NASA ames PAH IR spectroscopic database: Computational version 3.00 with updated content and the introduction of multiple scaling factors. The Astrophysical Journal Supplement Series, 234(2), 32. https://doi.org/10.3847/1538-4365/aaa019.
Bauschlicher, C. W. Jr, Peeters, E., & Allamandola, L. J. (2008). The infrared spectra of very large, compact, highly symmetric, polycyclic aromatic hydrocarbons (PAHs). The Astrophysical Journal, 678(1), 316–327. https://doi.org/10.1086/533424.
Beser, U., Kastler, M., Maghsoumi, A., Wagner, M., Castiglioni, C., Tommasini, M., Narita, A., Feng, X., & Müllen, K. (2016). A C216-Nanographene molecule with defined cavity as extended coronoid. Journal of the American Chemical Society, 138(13), 4322–4325. https://doi.org/10.1021/jacs.6b01181.
Bouwman, J., Linnartz, H., & Tielens, A. G. (2021). Mid-infrared spectroscopic signatures of dibenzopyrene cations – the effect of symmetry on pah ir spectroscopy. Journal of Molecular Spectroscopy, 378, 111458. https://doi.org/10.1016/j.jms.2021.111458.
Bouwman, J., Castellanos, P., Bulak, M., Terwisscha van Scheltinga, J., Cami, J., Linnartz, H., & Tielens, A. G. G. M. (2019). Effect of molecular structure on the infrared signatures of astronomically relevant pahs. A&A, 621, A80. https://doi.org/10.1051/0004-6361/201834130.
Bérczi-Kovács, E., & Bernáth, A. (2018). The complexity of the Clar number problem and an exact algorithm. Journal of Mathematical Chemistry, 56, 597–605. https://doi.org/10.1007/s10910-017-0799-8.
Brinkmann, G., Caporossi, G., & Hansen, P. (2002). A constructive enumeration of fusenes and benzenoids journal of algorithms 45(2).
Brunvoll, J., Cyvin, R. N., & Cyvin, S. J. (1990). Enumeration and classification of double coronoid hydrocarbons – appendix: Triple coronoids. Croatica Chemica Acta, 63(4), 585–601.
Caporossi, G., & Hansen, P. (1998). Enumeration of polyhex hydrocarbons to h = 21. Journal of Chemical Information and Computer Sciences, 38(4), 610–619. https://doi.org/10.1021/ci970116n.
Carissan, Y., Dim, C. A., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2020). Computing the local aromaticity of benzenoids thanks to constraint programming. In CP, pp. 673–689.
Carissan, Y., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2020). Using constraint programming to generate benzenoid structures in theoretical chemistry. In CP, pp. 690–706.
Carissan, Y., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2021). Exhaustive generation of benzenoid structures sharing common patterns. In CP, pp. 19:1–19:18.
Chen, Y., Lin, C., Luo, Z., Yin, Z., Shi, H., Zhu, Y., & Wang, J. (2021). Double π-extended Undecabenzo[7]helicene. Angew. Chem. Int. Ed., 60(14), 7796–7801. https://doi.org/10.1002/anie.202014621.
Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R., & von Ragué Schleyer, P. (2005). Nucleus-Independent Chemical shifts (NICS) as an aromaticity criterion. Chemical Reviews, 105, 3842–3888.
Cheung, K.Y., Watanabe, K., Segawa, Y., & Itami, K. (2021). Synthesis of a zigzag carbon nanobelt. Nature Chemistry, 13(3), 255–259. https://doi.org/10.1038/s41557-020-00627-5.
Clar, E. (1972). The aromatic sextet wiley.
Clar, E., & Schoental, R. (1964). Polycyclic Hydrocarbons Volume Vol. 1. Berlin: Springer.
Cocchi, C., Prezzi, D., Ruini, A., Caldas, M. J., & Molinari, E. (2014). Anisotropy and size effects on the optical spectra of polycyclic aromatic hydrocarbons. The Journal of Physical Chemistry A, 118(33), 6507–6513. https://doi.org/10.1021/jp503054j.
Cyvin, J., Brunvoll, J., & Cyvin, B. N. (1989). Search for Concealed non-kekuléan Benzenoids and Coronoids. Journal of Chemical Information and Computer Sciences, 29(4), 237.
Devriendt, J., Bogaerts, B., Bruynooghe, M., & Denecker, M. (2016). Improved static symmetry breaking for sat. In N. Creignou D. Le Berre (Eds.) Theory and Applications of Satisfiability Testing – SAT 2016 (pp. 104–122).
Di Giovannantonio, M., Yao, X., Eimre, K., Urgel, J. I., Ruffieux, P., Pignedoli, C. A., Müllen, K., Fasel, R., & Narita, A. (2020). Large-Cavity Coronoids with different inner and outer edge structures. Journal of the American Chemical Society, 142(28), 12046–12050. https://doi.org/10.1021/jacs.0c05268.
Dias, J. R. (2008). Structure and electronic characteristics of coronoid polycyclic aromatic hydrocarbons as potential models of graphite layers with hole defects. The Journal of Physical Chemistry A, 112(47), 12281–12292. https://doi.org/10.1021/jp806987f.
Dias, J. R. (2013). Valence-bond determination of diradical character of polycyclic aromatic hydrocarbons: From acenes to rectangular benzenoids. The Journal of Physical Chemistry. A, 117, 4716–4725.
Draine, B. T. (2011). Astronomical Models of PAHs and Dust. EAS Publications Series, 46, 29–42. https://doi.org/10.1051/eas/1146003.
Eaton, P. E., & Cole, T. W. (1964). Cubane. Journal of the American Chemical Society, 86(15), 3157–3158. https://doi.org/10.1021/ja01069a041.
Fages, J. (2014). Exploitation de structures de graphe en programmation par contraintes. Ph.D. thesis, École des mines de Nantes, France.
Fages, J. G., Lorca, X., & Prud’homme, C. Choco solver user guide documentation. https://choco-solver.readthedocs.io/en/latest/.
Fujise, K., Tsurumaki, E., Wakamatsu, K., & Toyota, S. (2021). Construction of helical structures with multiple fused anthracenes: Structures and properties of long expanded helicenes. Chemistry - A European Journal, 27(14), 4548–4552. https://doi.org/10.1002/chem.202004720.
Hückel, E. (1931). Quantentheoretische beiträge zum Benzolproblem. Zeitschrift fü,r Physik, 70, 204–286.
Ismail, I., Stuttaford-Fowler, H. B. V. A., Ochan Ashok, C., Robertson, C., & Habershon, S. (2019). Automatic proposal of multistep reaction mechanisms using a graph-driven search. The Journal of Physical Chemistry A, 123(15), 3407–3417. https://doi.org/10.1021/acs.jpca.9b01014.
Kancherla, S., & Jørgensen, K. B. (2020). Synthesis of Phenacene-Helicene Hybrids by Directed Remote Metalation. J. Org. Chem., 85(17), 11140–11153. https://doi.org/10.1021/acs.joc.0c01097.
Kasteleyn, P. W. (1967). Graph theory and crystal physics, p. 43–110 Academic Press.
Kastler, M., Schmidt, J., Pisula, W., Sebastiani, D., & Müllen, K. (2006). From armchair to zigzag peripheries in nanographenes. Journal of the American Chemical Society, 128(29), 9526–9534. https://doi.org/10.1021/ja062026h.
Kekulé, A. (1866). Untersuchungen über aromatische verbindungen ueber die constitution der aromatischen verbindungen. Justus Liebigs Annalen der Chemie, 137(2), 129–196. https://doi.org/10.1002/jlac.18661370202.
Kim, Y., Kim, J. W., Kim, Z., & Kim, W. Y. (2018). Efficient prediction of reaction paths through molecular graph and reaction network analysis. Chemical Science, 9(4), 825–835. https://doi.org/10.1039/C7SC03628K.
Konishi, A., Horii, K., Shiomi, D., Sato, K., Takui, T., & Yasuda, M. (2019). Open-Shell And antiaromatic character induced by the highly symmetric geometry of the planar heptalene structure: Synthesis and characterization of a nonalternant isomer of bisanthene journal of the american chemical society. https://doi.org/10.1021/jacs.9b04080.
Lecoutre, C. (2009). Constraint networks: Techniques and algorithms. Wiley.
Lin, C. (2000). Efficient method for calculating the resonance energy expression of benzenoid hydrocarbons based on the enumeration of conjugated circuits. Journal of Chemical Information and Computer Sciences, 40, 778–783.
Lin, C., & Fan, G. (1999). Algorithms for the count of linearly independent and minimal conjugated circuits in benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci, 39, 782–787.
Liu, J., & Feng, X. (2020). Synthetic tailoring of graphene nanostructures with Zigzag-Edged topologies: Progress and perspectives. Angewandte Chemie International Edition, 59, 2–18. https://doi.org/10.1002/anie.202008838.
Longuet-Higgins, H. (1963). The symmetry groups of non-rigid molecules. Molecular Physics, 6 (5), 445–460. https://doi.org/10.1080/00268976300100501.
Luch, A. (2005). The carcinogenic effects of polycyclic aromatic hydrocarbons. London: Imperial College Press. https://www.worldscientific.com/worldscibooks/10.1142/p306.
Mann, M., Nahar, F., Schnorr, N., Backofen, R., Stadler, P. F., & Flamm, C. (2014). Atom mapping with constraint programming. Algorithms for Molecular Biology, 9(1), 23. https://doi.org/10.1186/s13015-014-0023-3.
Mann, M., & Thiel, B. (2013). Kekulé Structures Enumeration Yields Unique SMILES. In Proceedings of Workshop on Constraint Based Methods for Bioinformatics.
Mishra, S., Beyer, D., Eimre, K., Kezilebieke, S., Berger, R., Gröning, O., Pignedoli, C. A., Müllen, K., Liljeroth, P., Ruffieux, P., Feng, X., & Fasel, R. (2020). Topological frustration induces unconventional magnetism in a nanographene. Nature Nanotechnology, 15(1), 22–28. https://doi.org/10.1038/s41565-019-0577-9.
Mishra, S., Beyer, D., Eimre, K., Liu, J., Berger, R., Gröning, O., Pignedoli, C. A., Müllen, K., Fasel, R., Feng, X., & Ruffieux, P. (2019). Synthesis and Characterization of π-extended Triangulene. Journal of the American Chemical Society, 141 (27), 10621–10625. https://doi.org/10.1021/jacs.9b05319.
Mishra, S., Lohr, T. G., Pignedoli, C. A., Liu, J., Berger, R., Urgel, J. I., Müllen, K., Feng, X., Ruffieux, P., & Fasel, R. (2018). Tailoring bond topologies in Open-Shell graphene nanostructures. ACS Nano, 12(12), 11917–11927. https://doi.org/10.1021/acsnano.8b07225.
Narita, A., Wang, X. Y., Feng, X., & Müllen, K. (2015). New advances in nanographene chemistry. Chemical Society Reviews, 44(18), 6616–6643. https://doi.org/10.1039/C5CS00183H.
Qiu, Z., Narita, A., & Müllen, K. (2020). Carbon nanostructures by macromolecular design from branched polyphenylenes to nanographenes and graphene nanoribbons. Faraday Discussions. https://doi.org/10.1039/D0FD00023J. Publisher: The Royal Society of Chemistry.
Randić, M. (1976). Conjugated circuits and resonance energies of benzenoid hydrocarbons. Chemical Physics Letters, 38, 68–70. https://doi.org/10.1016/0009-2614(76)80257-6.
Randić, M. (2003). Aromaticity of polycyclic conjugated hydrocarbons. Chemical Reviews, 103(9), 3449–3606. https://doi.org/10.1021/cr9903656.
Randić, M. (2019). Benzenoid rings resonance energies and local aromaticity of benzenoid hydrocarbons. Journal of Computational Chemistry, 40(5), 753–762.
Randić, M., & Balaban, A. T. (2018). Local aromaticity and aromatic sextet theory beyond clar. Int. J. Quantum Chem 108(17).
Randić, M., & Guo, X. (1994). Recursive method for enumeration of linearly independent and minimal conjugated circuits of benzenoid hydrocarbons. Journal of Chemical Information and Modeling 34(2).
Randić, M., Guo, X., & Klein, D.J. (1996). Analytical Expressions for the Count of LM-conjugated Circuits of Benzenoid Hydrocarbons. International Journal of Quantum Chemistry, 60, 943–958.
Rayne, S., & Forest, K. (2011). Singlet-triplet (\(s_{0} \rightarrow t_{1}\)) excitation energies of the [4 × n] rectangular graphene nanoribbon series (n= 2-6): a comparative theoretical study. Comput. Theor. Chem., 976, 105–112.
Régin, J. C. (1994). A filtering algorithm for constraints of difference in CSPs. In Proceedings of AAAI, pp. 362–367.
Ricca, A., Bauschlicher, C. W., Boersma, C., Tielens, A. G. G. M., & Allamandola, L. J. (2012). The Infrared spectroscopy of compact polycyclic aromatic hydrocarbons containing up to 384 carbons. The Astrophysical Journal, 754(1), 75. https://doi.org/10.1088/0004-637X/754/1/75.
Ricca, A., Roser, J. E., Peeters, E., & Boersma, C. (2019). Polycyclic aromatic hydrocarbons with armchair edges: Potential emitters in class b sources. The Astrophysical Journal, 882(1), 56. https://doi.org/10.3847/1538-4357/ab3124.
Rieger, R., & Müllen, K. (2010). Forever young: Polycyclic aromatic hydrocarbons as model cases for structural and optical studies. Journal of Physical Organic Chemistry, 23(4), 315–325. https://doi.org/10.1002/poc.1644.
Rispoli, F. J. (2001). Counting perfect matchings in hexagonal systems associated with benzenoids. Mathematics Magazine, 14, 194–200.
Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of constraint programming elsevier.
Roy, M., Berezhnaia, V., Villa, M., Vanthuyne, N., Giorgi, M., Naubron, J. V., Poyer, S., Monnier, V., Charles, L., Carissan, Y., Hagebaum-Reignier, D., Rodriguez, J., Gingras, M., & Coquerel, Y. (2020). Stereoselective syntheses, structures, and properties of extremely distorted chiral nanographenes embedding hextuple helicenes. Angewandte Chemie International Edition, 59(8), 3264–3271.
Ruiz-Morales, Y. (2004). The agreement between clar structures and Nucleus-Independent chemical shift values in pericondensed benzenoid polycyclic aromatic hydrocarbons: an application of the Y-Rule. The Journal of Physical Chemistry. A, 108, 10873–10896.
Sánchez-Grande, A., Urgel, J. I., Veis, L., Edalatmanesh, S., Santos, J., Lauwaet, K., Mutombo, P., Gallego, J. M., Brabec, J., Beran, P., Nachtigallová, D., Miranda, R., Martín, N., Jelínek, P., & Écija, D. (2021). Unravelling the Open-Shell character of peripentacene on au(111). The Journal of Physical Chemistry Letters, 12(1), 330–336. https://doi.org/10.1021/acs.jpclett.0c02518.
Silva, P. V., & Girão, E. C. (2021). Electronic and transport properties of graphene nanoribbons based on Super-Heptazethrene molecular blocks. The Journal of Physical Chemistry C, 125(20), 11235–11248. https://doi.org/10.1021/acs.jpcc.1c02514.
Simoncini, D., Allouche, D., de Givry, S., Delmas, C., Barbe, S., & Schiex, T. (2015). Guaranteed discrete energy optimization on large protein design problems. Journal of Chemical Theory and Computation, 11(12), 5980–5989. https://doi.org/10.1021/acs.jctc.5b00594.
Taylor, P. R. (1992). Molecular symmetry and quantum chemistry. In B. O. Roos (Ed.) Lecture Notes in Quantum Chemistry: European Summer School in Quantum Chemistry, Lecture Notes in Chemistry.
Ternansky, R. J., Balogh, D. W., & Paquette, L. A. (1982). Dodecahedrane. Journal of the American Chemical Society, 104(16), 4503–4504. https://doi.org/10.1021/ja00380a040.
Trinquier, G., & Malrieu, J. P. (2018). Predicting the Open-Shell character of polycyclic hydrocarbons in terms of clar sextets. The Journal of Physical Chemistry A, 122(4), 1088–1103. https://doi.org/10.1021/acs.jpca.7b11095.
Uryu, M., Hiraga, T., Koga, Y., Saito, Y., Murakami, K., & Itami, K. (2020). Synthesis of polybenzoacenes: Annulative dimerization of phenylene triflate by twofold C-H activation. Angewandte Chemie, 132(16), 6613–6616. https://doi.org/10.1002/ange.202001211.
Wu, C. W. (2004). Modelling chemical reactions using constraint programming and molecular graphs. In Principles and practice of constraint programming, pp. 808–808.
Wu, J., Pisula, W., & Müllen, K. (2007). Graphenes as potential material for electronics. Chemical Reviews, 107(3), 718–747. https://doi.org/10.1021/cr068010r.
Xia, Z., Pun, S. H., Chen, H., & Miao, Q. (2021). Synthesis of zigzag carbon nanobelts through scholl reactions. Angew. Chem. Int. Ed., 60 (18), 10311–10318. https://doi.org/10.1002/anie.202100343.
Acknowledgements
The authors would like to thank Mohamed Sami Cherif and the anonymous reviewers for their useful comments.
Funding
This work has been funded by the Agence Nationale de la Recherche project ANR-16-CE40-0028.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interests
All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work has been funded by the Agence Nationale de la Recherche project ANR-16-CE40-0028.
Appendix Detailed results for the subset \({\mathscr{B}}_{1}\)
Appendix Detailed results for the subset \({\mathscr{B}}_{1}\)
Figures 29-34 describe the benzenoid structures considered in the subset \({\mathscr{B}}_{1}\). These structures have various sizes or shapes. They may admit or not some symmetries. Moreover, in these figures, we also specify the values computed by CRECP and NICS in blue and red respectively. For sake of readability, we only provide them for a single hexagon per symmetry class. Indeed, all the hexagons of a symmetry class have the same value whatever the considered method.
Rights and permissions
About this article
Cite this article
Carissan, Y., Hagebaum-Reignier, D., Prcovic, N. et al. How constraint programming can help chemists to generate Benzenoid structures and assess the local Aromaticity of Benzenoids. Constraints 27, 192–248 (2022). https://doi.org/10.1007/s10601-022-09328-x
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10601-022-09328-x