A bi-objective network design approach for discovering functional modules linking Golgi apparatus fragmentation and neuronal death | Annals of Operations Research Skip to main content

Advertisement

Log in

A bi-objective network design approach for discovering functional modules linking Golgi apparatus fragmentation and neuronal death

  • S.I.: OR in Neuroscience
  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

Experimental records show the existence of a biological linkage between neuronal death and Golgi apparatus fragmentation. The comprehension of such linkage should help to understand the dynamics undergoing neurological damage caused by diseases such as Alzheimer’s disease or amyotrophic lateral sclerosis. In this paper, the bi-objective minimum cardinality bottleneck Steiner tree problem along with an ad-hoc exact algorithm are proposed to study such phenomena. The proposed algorithm is based on integer programming and the so-called \(\epsilon \)-constraint method. A key feature of the devised approach is that it allows an efficient integer programming formulation of the problem. The obtained results show that it is possible to obtain additional evidence supporting the hypothesis that alterations of the Golgi apparatus structure and neuronal death interact through the biological mechanisms underlying the outbreak and progression of neurodegenerative diseases. Moreover, the function of cellular response to stress as a biological linkage between these phenomena is also further investigated. Complementary, computational results on a synthetic dataset are also provided with the aim of reporting the performance of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. KEGG network diagrams are manually drawn detailed molecular interaction/reaction schemes corresponding to different processes of interest; they are made available by the Kyoto Encyclopedia of Genes and Genome (KEGG 2015).

References

  • Álvarez-Miranda, E., Ljubić, I., & Mutzel, P. (2013a). The maximum weight connected subgraph problem. In M. Jünger & G. Reinelt (Eds.), Facets of Combinatorial Optimization (pp. 245–270). Berlin: Springer.

    Chapter  Google Scholar 

  • Álvarez-Miranda, E., Ljubić, I., & Mutzel, P. (2013b). The rooted maximum node-weight connected subgraph problem. In Gomes, C., & Sellmann, M. editors, Proceedings of CPAIOR 2013, volume 7874 of LNCS, (pp. 300–315). Springer, 2013b.

  • Backes, C., Rurainski, A., Klau, G., Müller, O., Stöckel, D., Gerasch, A., et al. (2011). An integer linear programming approach for finding deregulated subgraphs in regulatory networks. Nucleic Acids Research, 1, 1–13.

    Google Scholar 

  • Bellouze, S., Schäfer, M., Buttigieg, D., Baillat, G., Rabouille, C., & Haase, G. (2014). Golgi fragmentation in pmn mice is due to a defective arf1/tbce cross-talk that coordinates copi vesicle formation and tubulin polymerization. Human Molecular Genetics, 23(22), 5961–5975.

    Article  Google Scholar 

  • Bertram, L., & Tanzi, R. (2005). The genetic epidemiology of neurodegenerative disease. The Journal of Clinical Investigation, 115(6), 1449–1457.

    Article  Google Scholar 

  • BioGRID\(^{3.4}\). Biological general repository for interaction datasets, 2015. URL http://thebiogrid.org/.

  • Boland, N., Charkhgard, H., & Savelsbergh, M. (2015). A criterion space search algorithm for biobjective mixed integer programming: The rectangle splitting method. Optimization Online

  • Cancino, J., & Luini, A. (2013). Signaling circuits on the golgi complex. Traffic, 14(2), 121–134.

    Article  Google Scholar 

  • Castro-Alvarez, J., Uribe-Arias, S., Mejía-Raigosa, D., & Cardona-Gómez, G. (2014). Cyclin-dependent kinase 5, a node protein in diminished tauopathy: A systems biology approach. Frontiers in aging neuroscience, 6, 1–13.

    Google Scholar 

  • Chia, J., Goh, G., Racine, V., Ng, S., Kumar, P., & Bard, F. (2012). RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells. Molecular Systems Biology, 8(1), 629.

    Google Scholar 

  • Chinchuluun, A., & Pardalos, P. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154(1), 29–50.

    Article  Google Scholar 

  • Dittrich, M., Klau, G., Rosenwald, A., Dandekar, T., & Muller, T. (2008). Identifying functional modules in protein-protein interaction networks: An integrated exact approach. Bioinformatics, 24(13), i223–i231.

    Article  Google Scholar 

  • Duthey, B. (2013). Alzheimer disease and other dementias. World Health Organization: Priority Medicines for Europe and the World “A Public Health Approach to Innovation”, 2013.

  • Duin, C., & Volgenant, A. (1997). The partial sum criterion for Steiner trees in graphs and shortest paths. European journal of operational research, 97(1), 172–182.

    Article  Google Scholar 

  • Ehrgott, M., & Wiecek, M. (2005). Mutiobjective programming. In Multiple criteria decision analysis: State of the art surveys, (pp. 667–708). Springer, 2005.

  • Fan, J., Hu, Z., Zeng, L., Lu, W., Tang, X., Zhang, J., et al. (2008). Golgi apparatus and neurodegenerative diseases. International Journal of Developmental Neuroscience, 26(6), 523–534.

    Article  Google Scholar 

  • Farhan, H., & Rabouille, C. (2011). Signalling to and from the secretory pathway. Journal of Cell Science, 124(2), 171–180.

    Article  Google Scholar 

  • Fischetti, M., Leitner, M., Ljubić, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., & Sinnl, M. (2014). Thinning out steiner trees a node-based model for uniform edge costs. Workshop of the 11th DIMACS Implementation Challenge

  • Fujita, Y., & Okamoto, K. (2005). Golgi apparatus of the motor neurons in patients with amyotrophic lateral sclerosis and in mice models of amyotrophic lateral sclerosis. Neuropathology, 25(4), 388–394.

    Article  Google Scholar 

  • Gene Cards: Human Gene Database. GRB2 Genecard, 2015. URL http://www.genecards.org/cgi-bin/carddisp.pl?gene=GRB2.

  • Gene Ontology Consortium . The Gene Ontology Project, 2015. URL http://geneontology.org/.

  • Haimes, Y., Lasdon, L., & Wismer, D. (1971). On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems Man and Cybernetics, 1, 296–297.

    Google Scholar 

  • Heneka, M., Reyes-Irisarri, E., Hüll, M., & Kummer, M. (2011) Impact and therapeutic potential of ppars in alzheimers disease. Current Neuropharmacology, 9(4)

  • Huang, S., & Fraenkel, E. (2009). Integration of proteomic, transcriptional, and interactome data reveals hidden signaling components. Science Signaling, 2(81), ra40.

    Article  Google Scholar 

  • Hutchins, J., & Barger, S. (1998). Why neurons die: Cell death in the nervous system. The Anatomical Record, 253, 79–90.

    Article  Google Scholar 

  • Ideker, T., Ozier, O., Schwikowski, B., & Siegel, A. (2002). Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics, 18(Supplement 1), S233–S240.

    Article  Google Scholar 

  • Jiang, Q., Wang, L., Guan, Y., Xu, H., Niu, Y., Han, L., et al. (2014). Golgin-84-associated golgi fragmentation triggers tau hyperphosphorylation by activation of cyclin-dependent kinase-5 and extracellular signal-regulated kinase. Neurobiology of Aging, 35(6), 1352–1363.

    Article  Google Scholar 

  • Joshi, G., Chi, Y., Huang, Z., & Wang, Y. (2014). A\(\beta \)-induced golgi fragmentation in Alzheimer’s disease enhances a\(\beta \) production. Proceedings of the National Academy of Sciences, 111(13), E1230–E1239.

    Article  Google Scholar 

  • Kamada, M., Izumi, Y., Ayaki, T., Nakamura, M., Kagawa, S., Kudo, E., et al. (2014). Clinicopathologic features of autosomal recessive amyotrophic lateral sclerosis associated with optineurin mutation. Neuropathology, 34(1), 64–70.

    Article  Google Scholar 

  • KEGG. Kyoto encyclopedia of genes and genomes, 2015. URL http://www.genome.jp/kegg/.

  • Kim, T., Kim, E., Yoon, S., & Yoon, J. (2008). Herp enhances er-associated protein degradation by recruiting ubiquilins. Biochemical and Biophysical Research Communications, 369(2), 741–746.

    Article  Google Scholar 

  • Koch, T., Martin, A., & Voß, A. (2001). SteinLib: An updated library on Steiner tree problems in graphs. Berlin: Springer.

    Google Scholar 

  • Kristiansen, M., & Ham, J. (2014). Mprogrammed cell death during neuronal development: the sympathetic neuron model. Cell Death and Differentiation, 21, 1025–1035.

    Article  Google Scholar 

  • Lee, J., Yang, Y., Liang, F., Gough, D., Levy, D., & Sehgal, P. (2012). Nongenomic STAT5-dependent effects on Golgi apparatus and endoplasmic reticulum structure and function. American Journal of Physiology - Cell Physiology, 302(5), C804–C820.

    Article  Google Scholar 

  • Leitner, M., Ljubić, I., & Sinnl, M. (2014). A computational study of exact approaches for the bi-objective prize-collecting steiner tree problem. INFORMS Journal on Computing, 27(1), 118–134.

    Article  Google Scholar 

  • Maere, S., Heymans, K., & Kuiper, M. (2005). BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics, 21, 448–3449.

    Article  Google Scholar 

  • Malm, T., Mariani, M., Donovan, L., Neilson, L., & Landreth, G. (2015). Activation of the nuclear receptor ppar is neuroprotective in a transgenic mouse model of alzheimers disease through inhibition of inflammation. Journal of Neuroinflammation, 12(7), 1–15.

    Google Scholar 

  • Mayeux, R. (2003). Epidemiology of neurodegeneration. Annual Review of Neuroscience, 26(1), 81–104.

    Article  Google Scholar 

  • Mazza, A., Gat-Viks, I., Farhan, H., & Sharan, R. (2014). A minimum-labeling approach for reconstructing protein networks across multiple conditions. Algorithms for Molecular Biology, 9(1), 1–8.

    Article  Google Scholar 

  • Millarte, V., Boncompain, G., Tillmann, K., Perez, F., Sztul, E., & Farhan, H. (2015). Phospholipase c gamma 1 regulates early secretory trafficking and cell migration via interaction with p115. Mol Biol Cell, 26, 2263–2278.

    Article  Google Scholar 

  • Mironov, A., & Pavelka, M. editors (2008). The Golgi Apparatus: State of the art 110 years after Camillo Golgi’s discovery. Springer, 1st edition, 2008.

  • Moss, A., & Rabani, Y. (2007). Approximation algorithms for constrained node weighted steiner tree problems. SIAM Journal on Computing, 37(2), 460–481.

    Article  Google Scholar 

  • Nakagomi, S., Barsoum, M., Bossy-Wetzel, E., Sütterlin, C., Malhotra, V., & Lipton, S. (2008). A golgi fragmentation pathway in neurodegeneration. Neurobiology of Disease, 29(2), 221–231.

    Article  Google Scholar 

  • Qiu, C., Kivipelto, M., & von Strauss, E. (2009). Epidemiology of Alzheimers disease: occurrence, determinants, and strategies toward intervention. Dialogues in Clinical Neuroscience, 11 (2).

  • REACTOME. A curated pathway database, 2015. URL http://www.reactome.org/.

  • Reitz, C., Brayne, C., & Mayeux, R. (2011). Epidemiology of alzheimer disease. Nature Reviews Neurology, 7(3), 137–152.

    Article  Google Scholar 

  • Renton, A., Chiò, A., & Traynor, B. (2015). State of play in amyotrophic lateral sclerosis genetics. Nature Neuroscience, 17, 17–23.

    Article  Google Scholar 

  • Sai, X., Kawamura, Y., Kokame, K., Yamaguchi, H., Shiraishi, H., Suzuki, R., et al. (2002). Endoplasmic reticulum stress-inducible protein, Herp, enhances presenilin-mediated generation of amyloid \(\beta \)-protein. Journal of Biological Chemistry, 277(15), 12915–12920.

    Article  Google Scholar 

  • Sharma, R. (2009). RNAi screening: Tips and techniques. Nature Immunology, 10(8), 799–804.

    Article  Google Scholar 

  • Simpson, J., Joggerst, B., Laketa, V., Verissimo, F., Cetin, C., Erfle, H., et al. (2012). Genome-wide rnai screening identifies human proteins with a regulatory function in the early secretory pathway. Nat Cell Biol, 14, 764–774.

    Article  Google Scholar 

  • STRING\(^{10}\). Known and predicted protein-protein interactions, 2015. URL http://string-db.org.

  • Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., et al. (2011). The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research, 39(suppl 1), D561–D568.

    Article  Google Scholar 

  • Tuvia, S., Taglicht, D., Erez, O., Alroy, I., Alchanati, I., Bicoviski, V., et al. (2007). The ubiquitin E3 ligase POSH regulates calcium homeostasis through spatial control of Herp. The Journal of Cell Biology, 177(1), 51–61.

    Article  Google Scholar 

  • Ulitsky, I., Karp, R., & Shamir, R. (2008). Detecting disease-specific dysregulated pathways via analysis of clinical expression profiles. In M. Vingron & L. Wong (Eds.), Research in computational molecular biology, volume 4955 of LNCS (pp. 347–359). Berlin: Springer.

    Google Scholar 

  • Ulitsky, I., Krishnamurthy, A., Karp, R., & Shamir, R. (2010). DEGAS: de novo discovery of dysregulated pathways in human diseases. PLoS One, 5(10), e13367.

    Article  Google Scholar 

  • Yosef, N., Ungar, L., Zalckvar, E., Kimchi, A., Kupiec, M., Ruppin, E., et al. (2009). Toward accurate reconstruction of functional protein networks. Molecular Systems Biology, 5(248), 55.

    Google Scholar 

  • Yosef, N., Zalckvar, E., Rubinstein, A., Homilius, M., Atias, N., Vardi, L., et al. (2011). ANAT: A tool for constructing and analyzing functional protein networks. Science Signaling, 4(196), pl1-pl1.

    Article  Google Scholar 

  • Yuan, J., Lipinski, M., & Degterev, A. (2003). Diversity in the mechanisms of neuronal cell death. Neuron, 40, 401–413.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the anonymous reviewers for their insightful and constructive comments which helped to improve the quality of the paper. E. Álvarez-Miranda acknowledges the support of the Chilean Council of Scientific and Technological Research, CONICYT, through the grant FONDECYT N.11140060 and through the Complex Engineering Systems Institute (ICM:P-05-004-F, CONICYT:FBO16). H. Farhan is supported by the Swiss National Science Foundation, the German Science Foundation, the Young Scholar Fund of the University of Konstanz and by the Canton of Thurgau. M. Sinnl is supported by the Austrian Research Fund (FWF, Project P 26755-N19). M. Luipersbeck acknowledges the support of the University of Vienna through the uni:docs fellowship programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Álvarez-Miranda.

Appendix

Appendix

See Figs. 5, 6, 7, and 8, Tables 2, 3, 4, 5, Fig. 9, Table 6.

Fig. 5
figure 5

Pathways in which the neuronal death hits appear to be statiscally meaningful

Fig. 6
figure 6

Pathways in which the Golgi fragmentation hits appear to be statiscally meaningful

Fig. 7
figure 7

KEGG pathway associated with ALS (obtained from KEGG 2015)

Fig. 8
figure 8

KEGG pathway associated with Alzheimer’s disease (dobtained from KEGG 2015)

Table 2 Proteins associated with neuronal death Gene (2015)
Table 3 Proteins regulating Golgi apparatus fragmentation Simpson et al. (2012)
Table 4 Proteins regulating Golgi apparatus fragmentation Chia et al. (2012)
Table 5 Proteins regulating Golgi apparatus fragmentation Millarte et al. (2015)
Fig. 9
figure 9

Network associated with the response to stress pathway (obtained via BiNGO analysis Maere et al. (2005) and displayed using STRING (2015) web tool)

Table 6 Proteins associated with the response to stress

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Álvarez-Miranda, E., Farhan, H., Luipersbeck, M. et al. A bi-objective network design approach for discovering functional modules linking Golgi apparatus fragmentation and neuronal death. Ann Oper Res 258, 5–30 (2017). https://doi.org/10.1007/s10479-016-2188-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-016-2188-2

Keywords

Navigation