Abstract
Surface tension in multi-phase fluid flow engenders pressure discontinuities on phase interfaces. In this work we present a finite element method to solve viscous incompressible flows problems, especially designed to cope with such a situation. Taking as a model the Stokes system we study a finite element solution method based on a classical Galerkin-least-squares formulation with an added pressure jump term multiplied by the mesh step size. Both the velocity and the pressure are represented with continuous piecewise linear functions except for the latter field on the embedded interface. A suitable modification of the pressure space is employed in order to represent interface discontinuities. A priori error analyses point to optimal convergence rates for this approach.
Similar content being viewed by others
References
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Ausas, R., Sousa, F., Buscaglia, G.: An improved finite element space for discontinuous pressures. Comput. Methods Appl. Mech. Eng. 199, 1019–1031 (2010)
Braess, D.: Finite Elements Theory, Fast Solvers, and Applications in Solid Mechanics. Cambridge University Press (1997)
Brenner, S., Carstensen, C. In: Stein, E., De Borst, R., Hughes, T.J.R. (eds.) : Finite element methods. In: Encyclopedia of Computational Mechanics. Wiley Online Library
Buscaglia, G., Agouzal, A.: Interpolation estimate for a finite-element space with embedded discontinuities. IMA J. Numer. Anal. 32, 672–686 (2012)
Buscaglia, G., Ausas, R.F.: Variational formulations for surface tension, capillarity and wetting. Comput. Methods. Appl. Mech. Eng. 200, 3011–3025 (2011)
Buscaglia, G., Ruas, V.: Finite element methods for the Stokes system with interface pressure discontinuities, IMA Journal of Numerical Analysis, first published online December 4, 2013, doi: 10.1093/imanum/drt035
Cartan, E.: Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars, Paris (1928)
Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978)
Douglas, J., Wang, J.: An absolutely stabilized finite element method for the stokes problem. Math. Comput. 52-186, 495–508 (1989)
Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements, Appl. Math. Sci. 159, Springer, N. Y., 2004
Geymonat, G.: Trace theorems for Sobolev spaces on Lipschitz domains. Necessary conditions. Annal. Math. Blaise Pascal 14, 187–197 (2007)
Girault, V., Raviart, P.A.: Finite Element Methods for the Navier-Stokes Equations. Springer (1986)
Hughes, T.J.R., Franca, L., Balestra, M.: A new finite element formulation for computational fluid dynamics,: V. The Circumventing the Babuška-Brezzi condition: A stable Petrov -Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl. Mech. & Eng. 59, 85–99 (1986)
Ladyzhenskaïa, O.A.: The boundary value problems of mathematical physics, Vol. 49. Springer, New York (1985)
Lai, M.J.: Multivariate splines and their applications, computational complexity, theory, techniques and applications, doi: 10.1007/978-1-4614-1800-9-126 (2012), 1939–1980
Lax, P.D., Richtmyer, R.D.: Survey of the stability of linear finite difference equations. Comm. Pure Appl. Math. 9, 267–293 (1956)
Lions, J.L.: Problèmes aux limites dans les équations aux dérivées partielles. Presses de l’Université de Montréal (1965)
Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, Masson, Paris (1968)
Rangarajan, R., Lew, A.J.: Analysis of a method to parameterize planar curves immersed in triangulations. SIAM J. Numer. Anal. 51-3, 1392–1420 (2013)
Sanchez, A.M., Arcangeli, R.: Estimation des erreurs de meilleure approximation polynomiale et d’interpolation de Lagrange dans les espaces de Sobolev d’ordre non entier. Numer. Math. 45, 301–321 (1984)
Scott, L.R., Zhang, S.: Finite element interpolation of non smooth functions satisfying boundary conditions. Math. Comput. 54-190, 483–493 (1990)
Strang, G., Fix, G.: An Analysis of the Finite Element Method. Prentice Hall, Englewood Cliffs (1973)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by: Axel Voigt
Vitoriano Ruas is a visiting professor at Universidade de São Paulo, Instituto de Ciências Matemáticas e Computação, São Carlos, Brazil.
Rights and permissions
About this article
Cite this article
Buscaglia, G., Ruas, V. Approximation of the multi-dimensional Stokes system with embedded pressure discontinuities. Adv Comput Math 41, 599–634 (2015). https://doi.org/10.1007/s10444-014-9378-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10444-014-9378-8
Keywords
- Embedded discontinuities
- Finite elements
- Galerkin-least squares
- Multi-dimensional
- Piecewise Linear
- Pressure jump
- Stokes system