The distribution of the root degree of a random permutation | Combinatorica
Skip to main content

The distribution of the root degree of a random permutation

  • Original Paper
  • Published:
Combinatorica Aims and scope Submit manuscript

Abstract

Given a permutation ω of {1, …, n}, let R(ω) be the root degree of ω, i.e. the smallest (prime) integer r such that there is a permutation σ with ω = σ r. We show that, for ω chosen uniformly at random, R(ω) = (lnlnn − 3lnlnln n + O p(1))−1 lnn, and find the limiting distribution of the remainder term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Bender: Asymptotical methods in enumeration, Siam Rev. 16 (1974), 485–515.

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Blum: Enumeration of the square permutations in S n, J. Comb. Theory (A) 17 (1974), 156–161.

    Article  MATH  MathSciNet  Google Scholar 

  3. E. D. Bolker and A. M. Gleason: Counting permutations, J. Comb. Theory (A) 29 (1980), 236–242.

    Article  MATH  MathSciNet  Google Scholar 

  4. B. Bollobás: Random Graphs, 2nd Edition, Cambridge Univ. Press (2001).

  5. M. Bóna, A. McLennan and D. White: Permutations with roots, Random Structures and Algorithms 17 (2000), 157–167.

    Article  MATH  MathSciNet  Google Scholar 

  6. G. H. Hardy and E. M. Wright: An Introduction to the Theory of Numbers, 5th ed., Oxford (1979).

  7. N. Pouyanne: On the number of permutations admitting an mth root, Electronic J. Comb. 9 (2002), #R3.

    MathSciNet  Google Scholar 

  8. L. A. Shepp and S. P. Lloyd: Ordered cycle lengths in a random permutation, Trans. Amer. Math. Soc. 121 (1966), 340–357.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Tenenbaum: Introduction to Analysis and Probabilistic Number Theory, Cambridge University Press (1995).

  10. P. Turán: On some connections between combinatorics and group theory, Colloq. Math. Soc. János Bolyai (P. Erdős, A. Rényi and V. T. Sós, eds.), pp. 1055–1082, North Holland, Amsterdam (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Pittel.

Additional information

Research supported in part by NSF grants CCR-0225610, DMS-0505550 and ARO grant W911NF-06-1-0076.

Research supported by NSF grant DMS-0406024.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bollobás, B., Pittel, B. The distribution of the root degree of a random permutation. Combinatorica 29, 131–151 (2009). https://doi.org/10.1007/s00493-009-2343-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00493-009-2343-3

Mathematics Subject Classification (2000)