Glass half full: sound synthesis for fluid–structure coupling using added mass operator | The Visual Computer Skip to main content
Log in

Glass half full: sound synthesis for fluid–structure coupling using added mass operator

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

We present a fast and practical method for simulating the sound of non-empty objects containing fluids. The method is designed and demonstrated for use in interactive 3D systems, where live sound synthesis is important. The key contribution of this work is to enhance the sound synthesis equation in the rigid-body audio pipeline to account for the fluid force on an object at the fluid–structure boundary. Additions include pre-processing steps to identify the mesh nodes of a tetrahedralized object that are in contact with the liquid and to apply an added mass operator to those structural boundary nodes and adjacent solid domain nodes by increasing their corresponding elements in the mass matrix proportional to the liquid’s density, which may vary with temperature and/or type of fluids. Our technique generalizes to any impermeable tetrahedral mesh representing the rigid objects and inviscid liquids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Adrien, J.-M. The missing link: modal synthesis. In: Representations of Musical Signals, pp. 269–298. MIT Press (1991)

  2. Basic, J.: Analytical and Numerical Computation of Added Mass in Ship Vibration Analysis (2012)

  3. Bazilevs, Y., Takizawa, K., Tezduyar, T.: Computational Fluid-Structure Interaction: Methods and Applications. Wiley, Chichester (2013)

    Book  MATH  Google Scholar 

  4. Boyd, J.P.: Chebyshev and Fourier Spectral Methods: Second Revised Edition. Dover Publications, N. Chelmsford (2001)

    Google Scholar 

  5. Brebbia, C.A.: Boundary Element Methods in Acoustics, 1st edn. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  6. Brennen, C.E.: A Review of Added Mass and Fluid Inertial Forces. Naval Civil Engineering Laboratory, Port Hueneme (1982)

    Google Scholar 

  7. CAL POLY POMONA MECHANICAL ENGINEERING DEPARTMENT.: Fluid mechanics: Topic 4.3—hydrostatic force on a curved surface (2016)

  8. Chadwick, J.N., James, D.L.: Animating fire with sound. In: ACM Transactions on Graphics (TOG). Vol. 30. ACM, 84 (2011)

  9. Cummings, J.J., Bailenson, J.N., Fidler, M.J.: How immersive is enough?: A foundation for a meta-analysis of the effect of immersive technology on measured presence (2012)

  10. Dobashi, Y., Yamamoto, T., Nishita, T.: Realtime rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Trans. Graphics (TOG)—Proc. ACM SIGGRAPH 2003 22(3), 732–740 (2003)

    Article  Google Scholar 

  11. Flemisch, B., Kaltenbacher, M., Wohlmuth, B.: Elasto-acoustic and acoustic-acoustic coupling on nonmatching grids. Int. J. Numer. Methods Eng. (2000)

  12. Forster, C., Wall, W., Ramm, E.: The artificial added mass effect in sequential staggered fluid-structure interaction algorithms. In: European Conference on Computational Fluid Dynamics (2006)

  13. Funkhouser, T., Tsingos, N., Jot, J.-M.: Survey of Methods for Modeling Sound Propagation in Interactive Virtual Environments. Presence and Teleoperation, Atlanta (2003)

    Google Scholar 

  14. Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: a hierarchical structure for rapid interference detection (1996)

  15. James, D.L., Barbic, J., Pai, D.K.: Precomputed acoustic transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. SIGGRAPH (2006)

  16. James, D.L., Langlois, T.R., Mehra, R., Zheng, C.: Physically Based Sound for Computer Animation and Virtual Environments. ACM SIGGRAPH 2016 Course. http://graphics.stanford.edu/courses/sound/. (2016)

  17. Kosslyn, S.M.: Mental images and the Brain. J. Cognit. Neuropsychol. 22(3–4) (2005)

  18. LIN, M., GOTTSCHALK, S.: Collision detection between geometric models: a survey. Proc. IMA Conf. Math. Surf. 1, 602–608 (1998)

    MATH  Google Scholar 

  19. Mehra, R., Rungta, A., Golas, A., Lin, M., Manocha, D.: Wave: interactive wave-based sound propagation for virtual environments. IEEE Trans. Vis. Comput. Graph. 21, 434–442 (2015)

    Article  Google Scholar 

  20. Moss, W., Yeh, H., Hong, J., Lin, M., Manocha, D.: Sounding liquids: automatic sound synthesis from fluid simulation. ACM Trans. Graph. (TOG) (2010)

  21. Muller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable Real-Time Deformations. ACM SIGGRAPH, New York (2002)

    Book  Google Scholar 

  22. Muller, M., Schirm, S., Teschner, M., Heidelberger, B., Gross, M.: Interaction of fluids with deformable solids. Comput. Anim. Virtual worlds 15(3–4), 159–171 (2004)

    Article  Google Scholar 

  23. Newman, J.N.: Marine Hydrodynamics. MIT Press, Cambridge (1977)

    Google Scholar 

  24. Obrien, J., Shen, C., Gatchalian, C.: Synthesizing sounds from rigid-body simulations. In: ACM SIGGRAPH Symposium on Computer Animation, pp. 175–181 (2002)

  25. Raghuvanshi, N., Lin, M.: Interactive sound synthesis for large scale environments. In: Proceedings of ACM I3D (2006)

  26. Raghuvanshi, N., Narain, R., Lin, M.C.: Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Trans. Vis. Comput. Graph. 15(September), 789–801 (2009)

    Article  Google Scholar 

  27. Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M., Govindaraju, N.: Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Trans. Graph. (SIGGRAPH) (2010)

  28. Ren, Z., Mehra, R., Coposky, J., Lin, M.: Tabletop ensemble: touch-enabled virtual percussion instruments. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2012)

  29. Ren, Z., Yen, H., Lin, M.C.: Example-guided physically based modal sound synthesis. ACM Trans. Graph. (TOG) 32, 1 (2013)

    Google Scholar 

  30. Rocchesso, D., Bresin, R., Fernstrom, M.: Sounding objects. Comput. Media Aesthet. (2003)

  31. Rungta, A., Schissler, C., Mehra, R., Malloy, C., Lin, M., Manocha, D.: Syncopation: interactive synthesis-coupled sound propagation. IEEE TVCG (2016)

  32. Sakamoto, S., Ushiyama, A., Nagatomo, H.: Numerical analysis of sound propagation in rooms using the finite difference time domain method. J. Acoust. Soc. Am. 120(5), 3008 (2006)

    Article  Google Scholar 

  33. Sanchez-Vives, M.V., Slater, M.: From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332–339 (2005)

    Article  Google Scholar 

  34. Sek, A., Moore, B.: Frequency discrimination as a function of frequency, measured in several ways. J. Acoust. Soc. Am. 97, 2479 (2016)

    Article  Google Scholar 

  35. Shabana, A.: Vibration of Discrete and Continuous Systems. Springer, Berlin (1997)

    MATH  Google Scholar 

  36. Sterling, A., Lin, M.C.: Interactive modal sound synthesis using generalized proportional damping. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D). (2016)

  37. Thompson, L.L.: A review of finite-element methods for time-harmonic acoustics. J. Acoust. Soc. Am. 119(3), 1315–1330 (2006)

    Article  Google Scholar 

  38. Tong, Z., Zhang Y., Zhang, Z.: Dynamic behavior and sound transmission analysis of a fluid-structure coupled system using the direct-bem/fem. J. Sound Vib. (2006)

  39. Tsingos, N., Funkhouser, T., Ngan, A., Carlbom, I.: Perceptual audio rendering of complex virtual environments. ACM Trans. Graph. 23, 249–258 (2004)

    Article  Google Scholar 

  40. Van Brummelen, E.: Added mass effects of compressible and incompressible flows in fluid-structure interaction. Delft Aerosp. Comput. Sci. (2009)

  41. van den Doel, K., Pai, D.K.: The sounds of physical shapes. Presence 7, 382–395 (1996)

    Article  Google Scholar 

  42. Van Den Doel, K., Kry, P.G., Pal, D.K.: Foleyautomatic: physically-based sound effects for interactive simulation and animation. In: Proc. of ACM SIGGRAPH, pp. 537–544 (2001)

  43. Zheng, C., James, D.L.: Rigid-body fracture sound with precomputed soundbanks. ACM Trans. Graph. 29, 69:1–69:13 (2010)

    Google Scholar 

  44. Zheng, C., James, D.L.: Toward high-quality modal contact sound. ACM Trans. Graph. (TOG) 30(4), 38 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Wilson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, J., Sterling, A., Rewkowski, N. et al. Glass half full: sound synthesis for fluid–structure coupling using added mass operator. Vis Comput 33, 1039–1048 (2017). https://doi.org/10.1007/s00371-017-1383-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-017-1383-8

Keywords

Navigation