Abstract
We present a fast and practical method for simulating the sound of non-empty objects containing fluids. The method is designed and demonstrated for use in interactive 3D systems, where live sound synthesis is important. The key contribution of this work is to enhance the sound synthesis equation in the rigid-body audio pipeline to account for the fluid force on an object at the fluid–structure boundary. Additions include pre-processing steps to identify the mesh nodes of a tetrahedralized object that are in contact with the liquid and to apply an added mass operator to those structural boundary nodes and adjacent solid domain nodes by increasing their corresponding elements in the mass matrix proportional to the liquid’s density, which may vary with temperature and/or type of fluids. Our technique generalizes to any impermeable tetrahedral mesh representing the rigid objects and inviscid liquids.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Adrien, J.-M. The missing link: modal synthesis. In: Representations of Musical Signals, pp. 269–298. MIT Press (1991)
Basic, J.: Analytical and Numerical Computation of Added Mass in Ship Vibration Analysis (2012)
Bazilevs, Y., Takizawa, K., Tezduyar, T.: Computational Fluid-Structure Interaction: Methods and Applications. Wiley, Chichester (2013)
Boyd, J.P.: Chebyshev and Fourier Spectral Methods: Second Revised Edition. Dover Publications, N. Chelmsford (2001)
Brebbia, C.A.: Boundary Element Methods in Acoustics, 1st edn. Springer, Heidelberg (1991)
Brennen, C.E.: A Review of Added Mass and Fluid Inertial Forces. Naval Civil Engineering Laboratory, Port Hueneme (1982)
CAL POLY POMONA MECHANICAL ENGINEERING DEPARTMENT.: Fluid mechanics: Topic 4.3—hydrostatic force on a curved surface (2016)
Chadwick, J.N., James, D.L.: Animating fire with sound. In: ACM Transactions on Graphics (TOG). Vol. 30. ACM, 84 (2011)
Cummings, J.J., Bailenson, J.N., Fidler, M.J.: How immersive is enough?: A foundation for a meta-analysis of the effect of immersive technology on measured presence (2012)
Dobashi, Y., Yamamoto, T., Nishita, T.: Realtime rendering of aerodynamic sound using sound textures based on computational fluid dynamics. ACM Trans. Graphics (TOG)—Proc. ACM SIGGRAPH 2003 22(3), 732–740 (2003)
Flemisch, B., Kaltenbacher, M., Wohlmuth, B.: Elasto-acoustic and acoustic-acoustic coupling on nonmatching grids. Int. J. Numer. Methods Eng. (2000)
Forster, C., Wall, W., Ramm, E.: The artificial added mass effect in sequential staggered fluid-structure interaction algorithms. In: European Conference on Computational Fluid Dynamics (2006)
Funkhouser, T., Tsingos, N., Jot, J.-M.: Survey of Methods for Modeling Sound Propagation in Interactive Virtual Environments. Presence and Teleoperation, Atlanta (2003)
Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: a hierarchical structure for rapid interference detection (1996)
James, D.L., Barbic, J., Pai, D.K.: Precomputed acoustic transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. SIGGRAPH (2006)
James, D.L., Langlois, T.R., Mehra, R., Zheng, C.: Physically Based Sound for Computer Animation and Virtual Environments. ACM SIGGRAPH 2016 Course. http://graphics.stanford.edu/courses/sound/. (2016)
Kosslyn, S.M.: Mental images and the Brain. J. Cognit. Neuropsychol. 22(3–4) (2005)
LIN, M., GOTTSCHALK, S.: Collision detection between geometric models: a survey. Proc. IMA Conf. Math. Surf. 1, 602–608 (1998)
Mehra, R., Rungta, A., Golas, A., Lin, M., Manocha, D.: Wave: interactive wave-based sound propagation for virtual environments. IEEE Trans. Vis. Comput. Graph. 21, 434–442 (2015)
Moss, W., Yeh, H., Hong, J., Lin, M., Manocha, D.: Sounding liquids: automatic sound synthesis from fluid simulation. ACM Trans. Graph. (TOG) (2010)
Muller, M., Dorsey, J., McMillan, L., Jagnow, R., Cutler, B.: Stable Real-Time Deformations. ACM SIGGRAPH, New York (2002)
Muller, M., Schirm, S., Teschner, M., Heidelberger, B., Gross, M.: Interaction of fluids with deformable solids. Comput. Anim. Virtual worlds 15(3–4), 159–171 (2004)
Newman, J.N.: Marine Hydrodynamics. MIT Press, Cambridge (1977)
Obrien, J., Shen, C., Gatchalian, C.: Synthesizing sounds from rigid-body simulations. In: ACM SIGGRAPH Symposium on Computer Animation, pp. 175–181 (2002)
Raghuvanshi, N., Lin, M.: Interactive sound synthesis for large scale environments. In: Proceedings of ACM I3D (2006)
Raghuvanshi, N., Narain, R., Lin, M.C.: Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Trans. Vis. Comput. Graph. 15(September), 789–801 (2009)
Raghuvanshi, N., Snyder, J., Mehra, R., Lin, M., Govindaraju, N.: Precomputed wave simulation for real-time sound propagation of dynamic sources in complex scenes. ACM Trans. Graph. (SIGGRAPH) (2010)
Ren, Z., Mehra, R., Coposky, J., Lin, M.: Tabletop ensemble: touch-enabled virtual percussion instruments. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (2012)
Ren, Z., Yen, H., Lin, M.C.: Example-guided physically based modal sound synthesis. ACM Trans. Graph. (TOG) 32, 1 (2013)
Rocchesso, D., Bresin, R., Fernstrom, M.: Sounding objects. Comput. Media Aesthet. (2003)
Rungta, A., Schissler, C., Mehra, R., Malloy, C., Lin, M., Manocha, D.: Syncopation: interactive synthesis-coupled sound propagation. IEEE TVCG (2016)
Sakamoto, S., Ushiyama, A., Nagatomo, H.: Numerical analysis of sound propagation in rooms using the finite difference time domain method. J. Acoust. Soc. Am. 120(5), 3008 (2006)
Sanchez-Vives, M.V., Slater, M.: From presence to consciousness through virtual reality. Nat. Rev. Neurosci. 6, 332–339 (2005)
Sek, A., Moore, B.: Frequency discrimination as a function of frequency, measured in several ways. J. Acoust. Soc. Am. 97, 2479 (2016)
Shabana, A.: Vibration of Discrete and Continuous Systems. Springer, Berlin (1997)
Sterling, A., Lin, M.C.: Interactive modal sound synthesis using generalized proportional damping. In: ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games (I3D). (2016)
Thompson, L.L.: A review of finite-element methods for time-harmonic acoustics. J. Acoust. Soc. Am. 119(3), 1315–1330 (2006)
Tong, Z., Zhang Y., Zhang, Z.: Dynamic behavior and sound transmission analysis of a fluid-structure coupled system using the direct-bem/fem. J. Sound Vib. (2006)
Tsingos, N., Funkhouser, T., Ngan, A., Carlbom, I.: Perceptual audio rendering of complex virtual environments. ACM Trans. Graph. 23, 249–258 (2004)
Van Brummelen, E.: Added mass effects of compressible and incompressible flows in fluid-structure interaction. Delft Aerosp. Comput. Sci. (2009)
van den Doel, K., Pai, D.K.: The sounds of physical shapes. Presence 7, 382–395 (1996)
Van Den Doel, K., Kry, P.G., Pal, D.K.: Foleyautomatic: physically-based sound effects for interactive simulation and animation. In: Proc. of ACM SIGGRAPH, pp. 537–544 (2001)
Zheng, C., James, D.L.: Rigid-body fracture sound with precomputed soundbanks. ACM Trans. Graph. 29, 69:1–69:13 (2010)
Zheng, C., James, D.L.: Toward high-quality modal contact sound. ACM Trans. Graph. (TOG) 30(4), 38 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wilson, J., Sterling, A., Rewkowski, N. et al. Glass half full: sound synthesis for fluid–structure coupling using added mass operator. Vis Comput 33, 1039–1048 (2017). https://doi.org/10.1007/s00371-017-1383-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-017-1383-8