Particle systems for adaptive, isotropic meshing of CAD models | Engineering with Computers
Skip to main content

Particle systems for adaptive, isotropic meshing of CAD models

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

We present a particle-based approach for generating adaptive triangular surface and tetrahedral volume meshes from computer-aided design models. Input shapes are treated as a collection of smooth, parametric surface patches that can meet non-smoothly on boundaries. Our approach uses a hierarchical sampling scheme that places particles on features in order of increasing dimensionality. These particles reach a good distribution by minimizing an energy computed in 3D world space, with movements occurring in the parametric space of each surface patch. Rather than using a pre-computed measure of feature size, our system automatically adapts to both curvature as well as a notion of topological separation. It also enforces a measure of smoothness on these constraints to construct a sizing field that acts as a proxy to piecewise-smooth feature size. We evaluate our technique with comparisons against other popular triangular meshing techniques for this domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Alliez P, Cohen-Steiner D, Yvinec M, Desbrun M (2005) Variational tetrahedral meshing. ACM Trans Graph 24(3):617–625

    Article  Google Scholar 

  2. Amenta N, Bern MW (1999) Surface reconstruction by Voronoi filtering. Discret Comput Geom 22(4):481–504

    Article  MathSciNet  MATH  Google Scholar 

  3. Antani L, Delage C, Alliez P (2007) Mesh sizing with additively weighted Voronoi diagrams. In: Proceedings of 16th IMR, pp 335–346

  4. Boissonnat JD, Oudot S (2005) Provably good sampling and meshing of surfaces. Graph Models 67(5):405–451

    Article  MATH  Google Scholar 

  5. Chen L (2004) Mesh smoothing schemes based on optimal Delaunay triangulations. In: Proceedings of 13th IMR, pp 109–120

  6. Cheng SW, Dey TK (2008) Maintaining deforming surface meshes. In: Proceedings of 19th symposium on discrete algorithms, pp 112–121

  7. Cheng SW, Dey TK, Levine JA (2007) A practical Delaunay meshing algorithm for a large class of domains. In: Proceedings of 16th IMR, pp 477–494

  8. Cheng SW, Dey TK, Ramos EA (2010) Delaunay refinement for piecewise smooth complexes. Discret Comput Geom 43(1):121–166

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng SW, Poon SH (2006) Three-dimensional Delaunay mesh generation. Discret Comput Geom 36(3):419–456

    Article  MathSciNet  MATH  Google Scholar 

  10. Chew LP (1989) Guaranteed-quality triangular meshes. Technical Report TR-89-983, Computer Science Department, Cornell University

  11. Dey TK, Levine JA (2009) Delaunay meshing of piecewise smooth complexes without expensive predicates. Algorithms 2(4):1327–1349

    Article  MathSciNet  Google Scholar 

  12. Dey TK, Li G, Ray T (2005) Polygonal surface remeshing with Delaunay refinement. In: Proceedings of 14th IMR, pp 343–361

  13. Dey TK, Sun J (2006) Normal and feature approximations from noisy point clouds. In: Foundation of Software Technology and Theoretical Computer Science, pp 21–32

  14. Du Q, Wang D (2003) Tetrahedral mesh generation and optimization based on centroidal Voronoi tessellations. Int J Numer Methods Eng 56(9):1355–1373

    Article  MathSciNet  MATH  Google Scholar 

  15. Haimes R, Aftosmis MJ (2002) On generating high quality watertight triangulations directly from CAD. In: International Society for Grid Generation

  16. Haimes R, Follen GJ (1998) Computational analysis programming interface. In: Proceedings of 6th International Conference Numerical Grid Generation in Computer Field Simulation, pp 663–672

  17. Hart JC, Bachta E, Jarosz W, Fleury T (2005) Using particles to sample and control more complex implicit surfaces. In: SIGGRAPH ’05 Courses. New York, USA, p 269

  18. Jones WT (2004) Toward a global parameterization for quilted CAD entities. In: Proceedings of 42nd AIAA aerospace sciences meeting and exhibit. AIAA Paper 2004-0611

  19. Karkanis T, Stewart AJ (2001) Curvature-dependent triangulation of implicit surfaces. IEEE Comput Graphics Appl 21(2):60–69

    Article  Google Scholar 

  20. Lohner R (1995) Surface gridding from discrete data. In: Proceedings of 4th IMR, pp 29–44

  21. Meyer MD, Georgel P, Whitaker RT (2005) Robust particle systems for curvature dependent sampling of implicit surfaces. In: Proceedings of the International Conference on Shape Modeling and Applications (SMI), pp 124–133

  22. Meyer MD, Kirby RM, Whitaker RT (2007) Topology, accuracy, and quality of isosurface meshes using dynamic particles. IEEE Trans Vis Comput Graph 13(6):1704–1711

    Article  Google Scholar 

  23. Meyer MD, Whitaker RT, Kirby RM, Ledergerber C, Pfister H (2008) Particle-based sampling and meshing of surfaces in multimaterial volumes. IEEE Trans Vis Comput Graph 14(6):1539–1546

    Article  Google Scholar 

  24. Rineau L, Yvinec M (2007) Meshing 3d domains bounded by piecewise smooth surfaces. In: Proceedings of 16th IMR, pp 443–460

  25. Ruppert J (1995) A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J Algorithms 18(3):548–585

    Article  MathSciNet  MATH  Google Scholar 

  26. Scheidegger CE, Fleishman S, Silva CT (2005) Triangulating point set surfaces with bounded error. In: Symposium on Geometry Proceedings, pp 63–72

  27. Schreiner JM, Scheidegger CE, Fleishman S, Silva CT (2006) Direct (re)meshing for efficient surface processing. Comput Graph Forum 25(3):527–536

    Article  Google Scholar 

  28. Shewchuk JR (1996) Triangle: engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin MC, Manocha D (eds) Applied computational geometry: towards geometric engineering, Springer, USA, pp 203–222

    Chapter  Google Scholar 

  29. Shewchuk JR (1998) Tetrahedral mesh generation by Delaunay refinement. In: Proceedings of 14th symposium on computational geometry, pp 86–95

  30. Si H, Gärtner K (2005) Meshing piecewise linear complexes by constrained Delaunay tetrahedralizations. In: Proceedings of 14th IMR, pp 147–163

  31. Tournois J, Alliez P, Devillers O (2007) Interleaving Delaunay refinement and optimization for 2d triangle mesh generation. In: Proceedings of 16th IMR, pp 83–101

  32. Tournois J, Wormser C, Alliez P, Desbrun M (2009) Interleaving Delaunay refinement and optimization for practical isotropic tetrahedron mesh generation. ACM Trans Graph 28(3):1–9

    Google Scholar 

  33. Turk G (1992) Re-tiling polygonal surfaces. In: Proceedings of SIGGRAPH ’92, pp 55–64

  34. Valette S, Chassery JM, Prost R (2008) Generic remeshing of 3d triangular meshes with metric-dependent discrete Voronoi diagrams. IEEE Trans Vis Comput Graph 14(2):369–381

    Article  Google Scholar 

  35. Witkin AP, Heckbert PS (1994) Using particles to sample and control implicit surfaces. In: Proceedings of SIGGRAPH ’94, pp 269–277

  36. Yamakawa S, Shimada K (2000) High quality anisotropic tetrahedral mesh generation via ellipsoidal bubble packing. In: Proceedings of 9th IMR, pp 263–274

  37. Yan DM, Lévy B, Liu Y, Sun F, Wang W (2009) Isotropic remeshing with fast and exact computation of restricted Voronoi diagram. Comput Graph Forum 28(5):1445–1454

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NIH/NIGMS Center for Integrative Biomedical Computing, 2P41-RR0112553-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Bronson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bronson, J.R., Levine, J.A. & Whitaker, R.T. Particle systems for adaptive, isotropic meshing of CAD models. Engineering with Computers 28, 331–344 (2012). https://doi.org/10.1007/s00366-012-0266-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-012-0266-x

Keywords