Agents that Learn How to Generate Arguments from Other Agents | New Generation Computing Skip to main content
Log in

Agents that Learn How to Generate Arguments from Other Agents

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

Learning how to argue is a key ability for a negotiator agent. In this paper, we propose an approach that allows agents to learn how to build arguments by observing how other agents argue in a negotiation context. Particularly, our approach enables the agent to infer the rules for argument generation that other agents apply to build their arguments. To carry out this goal, the agent stores the arguments uttered by other agents and the facts of the negotiation context where each argument is uttered. Then, an algorithm for fuzzy generalized association rules is applied to discover the desired rules. This kind of algorithm allows us (a) to obtain general rules that can be applied to different negotiation contexts; and (b) to deal with the uncertainty about the knowledge of what facts of the context are taken into account by the agents. The experimental results showed that it is possible to infer argument generation rules from a reduced number of observed arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Agrawal, R. and Srikant, R., “Fast algorithms for mining association rules in large databases,” in Proc. of the 20th International Conference on Very Large Data Bases, VLDB ’94, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, pp. 487–499, 1994. ISBN 1-55860-153-8.

  2. Agrawal, R., Imieliński, T. and Swami, A., “Mining association rules between sets of items in large databases,” in SIGMOD ’93, ACM, New York, NY, USA, pp. 207–216, 1993. ISBN 0-89791-592-5. doi: http://doi.acm.org/10.1145/170035.170072.

  3. Amgoud, L. and Prade, H., “Generation and evaluation of different types of arguments in negotiation,” in Proc. of the international workshop on non-monotonic reasoning, Whistler BC, Canada, pp. 10–15, 2004.

  4. Amgoud, L., Parsons, S. and Maudet, N., “Arguments, dialogue, and negotiation,” Journal of Artificial Intelligence Research, 23, pp. 2005, 2000.

  5. Amgoud, L., Dimopoulos, Y. and Moraitis, P., “A unified and general framework for argumentation-based negotiation,” in AAMAS ’07, ACM, New York, NY, USA, pp. 1–8, 2007. ISBN 978-81-904262-7-5. doi: http://doi.acm.org/10.1145/1329125.1329317.

  6. Ashri, R., Rahwan, I. and Luck, M., “Architectures for negotiating agents,” in Proc. of Multi-Agent Systems and Applications III (Marik, V., Mueller, J. and Pechoucek, M. eds.), Springer, Prague, Czech Republic, pp. 136–146, 2003. URL http://eprints.ecs.soton.ac.uk/8316/.

  7. Delgado, M., Marín, N., Martín-Bautista, M. J., Sánchez, D. and Vila, M. A., “Mining fuzzy association rules: an overview,” in BISC International Workshop on Soft Computing for Internet and Bioinformatics, 2003.

  8. Delgado, M., Marín, N., Sánchez, D. and Vila, M. A., “Fuzzy association rules: general model and applications,” IEEE Transactions on Fuzzy Systems, 11, pp. 214–225, 2003.

    Google Scholar 

  9. Geipel, M. M. and Weiss, G., “A generic framework for argumentation-based negotiation,” in CIA ‘07: Proc. of the 11th international workshop on Cooperative Information Agents XI, Springer-Verlag, Berlin, Heidelberg, pp. 209–223, 2007. ISBN 978-3-540-75118-2.

  10. Governatori, G. and Stranieri, A., “Towards the application of association rules for defeasible rule discovery,” in Frontiers in Artificial Intelligence and Applications (Loui, R., Muntjewerff, A., Verheij, B., Lodder, A. eds.), Proc. of JURIX 2001, 70, IOS Press, 2001.

  11. Hong, T., Lin, K. and Wang, S., “Fuzzy data mining for interesting generalized association rules,” Fuzzy Sets Syst., 138, 2, pp. 255–269, 2003. ISSN 0165-0114. doi: http://dx.doi.org/10.1016/S0165-0114(02)00272-5.

  12. Jennings, N. R., Parsons, S., Noriega, P. and Sierra, C., “On argumentationbased negotiation,” in Proc. of the International Workshop on Multi-Agent Systems (IWMAS-98), Boston, MA, 1998.

  13. Kandel, A., Fuzzy expert systems, CRC Press, 1992.

  14. Karlins, M. and Abelson, H. I., Persuasion: how opinions and attitudes are changed, Springer Verlag, Berlin, 1970.

  15. Kraus, S., Sycara, K. and Evenchik, A., “Reaching agreements through argumentation: a logical model and implementation,” Artif. Intell., 104, 1-2, pp. 1–69, 1998. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/S0004-3702(98)00078-2.

  16. Kunkle, D., Zhang, D. and Cooperman, G., “Mining frequent generalized itemsets and generalized association rules without redundancy,” Journal of Computer Science and Technology, 23, pp. 77–102, 2008. ISSN 1000-9000. URL http://dx.doi.org/10.1007/s11390-008-9107-1. 10.1007/s11390-008-9107-1.

  17. Kuok, C. M., Fu, A. W. and Wong, M. H., “Mining fuzzy association rules in databases,” SIGMOD Record, 27, 1, pp. 41–46, 1998.

  18. Monteserin, A. and Amandi, A., “Building user argumentative models,” Applied Intelligence, 32, 1, pp. 131–145, 2010. ISSN 0924-669X. doi: http://dx.doi.org/10.1007/s10489-008-0139-6.

  19. Monteserin, A. and Amandi, A., “A reinforcement learning approach to improve the argument selection effectiveness in argumentationbased negotiation,” Expert Systems with Applications, 40, 6, pp. 2182– 2188, 2013. ISSN 0957-4174. doi: 10.1016/j.eswa.2012.10.045. URL http://www.sciencedirect.com/science/article/pii/S0957417412011694.

  20. O’Keefe, D. J., Persuasion: Theory and Research, SAGE Publications, 1990.

  21. Parsons, S., Sierra, C. and Jennings, N. R., “Agents that reason and negotiate by arguing,” Journal of Logic and Computation, 8, 3, pp. 261–292, 1998. URL http://eprints.ecs.soton.ac.uk/2113/.

  22. Rahwan, I., Ramchurn, S. D., Jennings, N. R., Mcburney, P., Parsons, S. and Sonenberg, L., “Argumentation-based negotiation,” Knowledge Engineering Review, 18, 4, pp. 343–375, 2003. ISSN 0269-8889. doi: http://dx.doi.org/DOI:10.1017/S0269888904000098.

  23. Rahwan, I., Sonenberg, L. and Mcburney, P., “Bargaining and argument-based negotiation: Some preliminary comparisons,” in LNCS, 3366, pp. 176–191, 2005.

  24. Ramchurn, S. D., Jennings, N. R. and Sierra, C., “Persuasive negotiation for autonomous agents: A rhetorical approach,” in IJCAI Workshop on Computational Models of Natural Argument, pp. 9–17, 2003. URL http://eprints.ecs.soton.ac.uk/8541/.

  25. Rao, A. S. and Georgeff, M. P., “Bdi-agents: from theory to practice,” in Proc. of the First Intl. Conference on Multiagent Systems, San Francisco, 1995. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.51.9247.

  26. Sierra, C., Jennings, N. R., Noriega, P. and Parsons, S., “A framework for argumentation-based negotiation,” in ATAL ’ 97: Proc. of the 4th International Workshop on Intelligent Agents IV, Agent Theories, Architectures, and Languages, pp. 177–192, Springer-Verlag, London, UK, 1998. ISBN 3-540-64162- 9.

  27. Srikant, R. and Agrawal, R., “Mining quantitative association rules in large relational tables,” in ACM SIGMOD Int. Conf. on Management of Data, pp. 1–12, 1996.

  28. Srikant, R. and Agrawal, R., “Mining generalized association rules,” Future Generation Computer Systems, 13, 2-3, pp. 161–180, 1997. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.7602.

  29. Wardeh, M., Bench-Capon, T. and Coenen, F., “Multi-party argument from experience,” in ArgMAS, pp. 216–235, 2009.

  30. Wardeh, M., Bench-Capon, T. and Coenen, F. P., “Padua: a protocol for argumentation dialogue using association rules,” AI and Law, 3, Springer, 2009.

  31. Zadeh, L. A., “Fuzzy sets,” Information and Control, 8, pp. 338–353, 1965.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Monteserin.

About this article

Cite this article

Monteserin, A., Amandi, A. Agents that Learn How to Generate Arguments from Other Agents. New Gener. Comput. 32, 31–58 (2014). https://doi.org/10.1007/s00354-014-0102-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-014-0102-5

Keywords

Navigation