A discontinuous Galerkin scheme for front propagation with obstacles | Numerische Mathematik Skip to main content
Log in

A discontinuous Galerkin scheme for front propagation with obstacles

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We are interested in front propagation problems in the presence of obstacles. We extend a previous work (Bokanowski et al. SIAM J Sci Comput 33(2):923–938, 2011), to propose a simple and direct discontinuous Galerkin (DG) method adapted to such front propagation problems. We follow the formulation of Bokanowski et al. (SIAM J Control Optim 48(7):4292–4316, (2010)), leading to a level set formulation driven by \(\min (u_t + H(x,\nabla u), u-g(x))=0\), where \(g(x)\) is an obstacle function. The DG scheme is motivated by the variational formulation when the Hamiltonian \(H\) is a linear function of \(\nabla u\), corresponding to linear convection problems in the presence of obstacles. The scheme is then generalized to nonlinear equations, written in an explicit form. Stability analysis is performed for the linear case with Euler forward, a Heun scheme and a Runge-Kutta third order time discretization using the technique proposed in Zhang and Shu (SIAM J Numer Anal 48:1038–1063, 2010). Several numerical examples are provided to demonstrate the robustness of the method. Finally, a narrow band approach is considered in order to reduce the computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. More precisely, it is proved that the bound holds if the CFL condition \(\lambda \max (\mu ,\mu ^2) \frac{\tau }{h}\le 1\) is satisfied, where \(\lambda \ge 0\) is such that \(\lambda +\lambda ^3=\frac{1}{4}\). Since \(\lambda \simeq 0.2367 \le \frac{1}{4}\), it sufficient to have \(\frac{1}{4}\max (\mu ,\mu ^2) \frac{\tau }{h}\le 1\).

  2. \(u(t,\mathbf x ):=u_0(R(-2 \pi a(\mathbf x )\ t )\ \mathbf{x })\) where \(R(\theta ):=\left( \begin{array}{rr} \cos (\theta ) &{} \!\! -\sin (\theta ) \\ \sin (\theta ) &{} \!\!\cos (\theta )\end{array}\right) \) and \(a(\mathbf x ):=\max (1-\Vert \mathbf x \Vert _2,0)\).

References

  1. Achdou, Y., Pironneau, O.: Computational methods for option pricing. In: Frontiers in Applied Mathematics, SIAM, Philadelphia (2005)

  2. Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. In: Systems and Control: Foundations and Applications. Birkhäuser, Boston (1997)

  3. Barron, E.N.: Viscosity solutions and analysis in \({L}^\infty \), pp. 1–60. Proceedings of the NATO advanced Study Institute, Cambridge 1999

  4. Bensoussan, A., Lions, J.L.: Inéquations variationnelles non linéaires du premier et du second ordre. C. R. Acad. Sci. Paris 276(Série A), 1411–1415 (1973)

  5. Bensoussan, A., Lions, J.L.: On the support of the solution of some variational inequalities of evolution. J. Math. Soc. Jpn. 28(1), 1–17 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bokanowski, O., Cheng, Y., Shu, C.-W.: A discontinuous Galerkin solver for front propagation. SIAM J. Sci. Comput. 33(2), 923–938 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bokanowski, O., Forcadel, N., Zidani, H.: Reachability and minimal times for state constrained nonlinear problems without any controllability assumption. SIAM J. Control Optim. 48(7), 4292–4316 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bokanowski, O., Forcadel, N., Zidani, H.: Deterministic state constrained optimal control problems without controllability assumptions. COCV 17, 995–1015 (2011)

    MATH  MathSciNet  Google Scholar 

  9. Bokanowski, O., Martin, S., Munos, R., Zidani, H.: An anti-diffusive scheme for viability problems. Appl. Numer. Math., 56(Issue 9, in Numerical Methods for Viscosity Solutions and Applications):1135–1254, (2006)

  10. Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: Optimal times for constrained nonlinear control problems without local controllability. Appl. Math. Optim. 36, 21–42 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Cardaliaguet, P., Quincampoix, M., Saint-Pierre, P.: Numerical schemes for discontinuous value function of optimal control. Set-Value Anal. 8, 111–126 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for directly solving the Hamilton-Jacobi equations. J. Comput. Phys. 223, 398–415 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Frankowska, H., Plaskacz, S.: Semicontinuous solutions of Hamilton-Jacobi-Bellman equations with degenerate state constraints. J. Math. Anal. Appl. 251(2), 818–838 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Hu, C., Shu, C.-W.: A discontinuous Galerkin finite element method for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 666–690 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kurzhanski, A., Varayiya, P.: Ellipsoidal techniques for reachability under state constraints. SIAM J. Control Optim. 45, 1369–1394 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, F., Shu, C.-W.: Reinterpretation and simplified implementation of a discontinuous Galerkin method for Hamilton-Jacobi equations. Appl. Math. Lett. 18, 1204–1209 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, F., Yakovlev, S.: A central discontinuous Galerkin method for Hamilton-Jacobi equations. J. Sci. Comput. 45, 404–428 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Saint-Pierre, P.: Approximation of the viability kernel. Appl. Math. Optim. 29, 187–2009 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  20. Soner, H.M.: Optimal control with state-space constraint II. SIAM J. Control Optim. 24(6), 1110–1122 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yan, J., Osher, S.: A local discontinuous Galerkin method for directly solving Hamilton-Jacobi equations. J. Comput. Phys. 230, 232–244 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates to the third order explicit runge-kutta discontinuous galerkin method for scalar conservation laws. SIAM J. Numer. Anal. 48, 1038–1063 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bokanowski.

Additional information

Research supported by the EU under the 7th Framework Programme Marie Curie Initial Training Network “FP7-PEOPLE-2010-ITN”, SADCO project, GA number 264735-SADCO.

Research supported by NSF grant DMS-1217563.

Research supported by ARO grants W911NF-08-1-0520 and W911NF-11-1-0091, and NSF grants DMS-0809086 and DMS-1112700.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bokanowski, O., Cheng, Y. & Shu, CW. A discontinuous Galerkin scheme for front propagation with obstacles. Numer. Math. 126, 1–31 (2014). https://doi.org/10.1007/s00211-013-0555-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-013-0555-3

Mathematics Subject Classification

Navigation