Lambda-Calculus with Director Strings | Applicable Algebra in Engineering, Communication and Computing Skip to main content
Log in

Lambda-Calculus with Director Strings

  • Published:
Applicable Algebra in Engineering, Communication and Computing Aims and scope

Abstract.

We present a name free λ-calculus with explicit substitutions, based on a generalised notion of director strings. Terms are annotated with information – directors – that indicate how substitutions should be propagated. We first present a calculus where we can simulate arbitrary β-reduction steps, and then simplify the rules to model the evaluation of functional programs (reduction to weak head normal form). We also show that we can define the closed reduction strategy. This is a weak strategy which, in contrast with standard weak strategies, allows certain reductions to take place inside λ-abstractions thus offering more sharing. Our experimental results confirm that, for large combinator-based terms, our weak evaluation strategies out-perform standard evaluators. Moreover, we derive two abstract machines for strong reduction which inherit the efficiency of the weak evaluators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. J. Funct. Prog. 1(4), 375–416 (1991)

    Google Scholar 

  2. Ariola, Z.M., Felleisen, M., Maraist, J., Odersky, M., Wadler, P.: A call-by-need lambda calculus. In: Proceedings of the 22nd ACM Symposium on Principles of Programming Languages (POPL’95), ACM Press, 1995, pp. 233–246

  3. Asperti, A., Giovanetti, C., Naletto, A.: The Bologna optimal higher-order machine. J. Funct. Prog. 6(6), 763–810 (1996)

    Google Scholar 

  4. Asperti, A., Guerrini, S.: The Optimal Implementation of Functional Programming Languages. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998

  5. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North-Holland, revised edition, 1984

  6. Barendregt, H.P.: Lambda calculi with types. In: Handbook of Logic in Computer Science, S. Abramsky, D. Gabbay, T.S.E. Maibaum, (eds.), Oxford University Press, 1992

  7. Benaissa, Z., Briaud, D., Lescanne, P., Rouyer-Degli., J.: Lambda-upsilon, a calculus of explicit substitutions which preserves strong normalisation. Journal of Functional Programming 6(5), 699–722 (1996)

    Google Scholar 

  8. Benaissa, Z., Rose, K.H., Lescanne, P.: Modeling sharing and recursion for weak reduction strategies using explicit substitution. In: 8th PLILP–-Symposium on Programming Language Implementation and Logic Programming, H. Kuchen, D. Swierstra, (eds.), Aachen, Germany, 1996, pp. 393–407

  9. Bloo, R., Geuvers, H.: Explicit substitution: on the edge of strong normalization. Theor. Comp. Sci. 211(1), 375–395 (1999)

    Google Scholar 

  10. Crégut, P.: An abstract machine for lambda-terms normalization. In: Lisp and Functional Programming 1990, ACM Press, 1990, pp. 333–340

  11. Curien, P.-L., Hardin, T., Lévy, J.-J.: Confluence properties of weak and strong calculi of explicit substitutions. Journal of the ACM 43(2), 362–397 (1996)

    Google Scholar 

  12. David, R., Guillaume, B.: A λ-calculus with explicit weakening and explicit substitution. Mathematical Structures in Computer Science 11(1), 169–206 (2001)

    Google Scholar 

  13. de Bruijn, N.G.: Lambda calculus notation with nameless dummies. Indagationes Mathematicae, 34, 381–392 (1972)

    Google Scholar 

  14. de Bruijn, N.G.: A namefree lambda calculus with facilities for internal definition of expressions and segments. Technical Report T.H.-Report 78-WSK-03, Department of Mathematics, Eindhoven University of Technology, 1978

  15. Dershowitz, N., Jouannaud, J.-P.: Rewrite Systems. In: Handbook of Theoretical Computer Science: Formal Methods and Semantics, J. van Leeuwen, (ed.), volume B. North-Holland, 1989

  16. Ennals, R., Jones, S.P.: Optimistic evaluation: an adaptive evaluation strategy for non-strict programs. In: Proceedings of the 8th ACM SIGPLAN International Conference on Functional Programming (ICFP-03), C. Norris, J. James, B. Fenwick (eds.), volume 38, 9 of ACM SIGPLAN Notices, ACM Press, 2003, pp. 287–298

  17. Fernández, M., Mackie, I.: Closed reductions in the λ-calculus. In: Proceedings of Computer Science Logic (CSL’99), J. Flum, M. Rodríguez-Artalejo (eds.), number 1683 in Lecture Notes in Computer Sciences, Springer-Verlag, 1999, pp. 220–234

  18. Fernández, M., Mackie, I.: Director strings and explicit substitutions. WESTAPP’01, Utrecht, 2001

  19. Gonthier, G., Abadi, M., Lévy, J.-J.: The geometry of optimal lambda reduction. In: Proceedings of the 19th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Albequerque, New Mexico, 1992, pp. 15–26

  20. Grégoire, B., Leroy, X.: A compiled implementation of strong reduction. In: Proceedings of ICFP’02, Pittsburgh, Pennsylvania, USA, 2002

  21. Hardin, T., Maranget, L., Pagano, B.: Functional runtime systems within the lambda-sigma calculus. J. Funct. Prog. 8(2), 131–176 (1998)

    Google Scholar 

  22. Kennaway, J., Sleep, M.: Director strings as combinators. ACM Transactions on Programming Languages and Systems 10(4), 602–626 (1988)

    Google Scholar 

  23. Lamping, J.: An algorithm for optimal lambda calculus reductions. In: Proceedings 17 th ACM Symposium on Principles of Programming Languages, 1990, pp. 16–30

  24. Lang, F.: Modèles de la β-réduction pour les implantations. PhD thesis, École Normale Supérieure de Lyon, 1998

  25. Lawall, J.L., Mairson, H.G.: Optimality and inefficiency: What isn’t a cost model of the lambda calculus? In: International Conference on Functional Programming, 1996, pp. 92–101

  26. Lescanne, P.: From λσ to λν: a journey through calculi of explicit substitutions. In: Proceedings of the 21st ACM Symposium on Principles of Programming Languages (POPL’94). ACM Press, 1994

  27. Lescanne, P., Rouyer-Degli, J.: The calculus of explicit substitutions lambda-upsilon. Technical Report RR-2222, INRIA, 1995

  28. Lévy, J.-J.: Optimal reductions in the lambda-calculus. In: To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism, J.P. Seldin, J.R. Hindley (eds.), Academic Press, 1980, pp. 159–191

  29. Melliès, P.-A.: Typed lambda-calculi with explicit substitutions may not terminate. In: Proceedings of the 2nd International Conference on Typed Lambda Calculi and Applications, number 902 in Lecture Notes in Computer Science, Springer-Verlag, 1995, pp. 328–334

  30. Nadathur, G.: A fine-grained notation for lambda terms and its use in intensional operations. Journal of Functional and Logic Programming, 1999(2), 1999

    Google Scholar 

  31. Nadathur, G.: The suspension notation for lambda terms and its use in metalanguage implementations. In: Electronic Notes in Theoretical Computer Science, R. de Queiroz, L.C. Pereira, E.H. Haeusler (eds.), volume 67. Elsevier, 2002

  32. Newman, M.: On theories with a combinatorial definition of ‘‘equivalence’’. Annals of Mathematics 43(2), 223–243 (1942)

    Google Scholar 

  33. Rose, K.: Explicit substitution - tutorial and survey, 1996. Lecture Series LS-96-3, BRICS, Dept. of Computer Science, University of Aarhus, Denmark

  34. Rosen, B.: Tree-manipulating systems and Church-Rosser theorems. Journal of the ACM 20(1), 160–187 (1973)

    Google Scholar 

  35. Sinot, F.-R., Fernández, M., Mackie, I.: Efficient reductions with director strings. In: Proceedings of Rewriting Techniques and Applications (RTA’03), R. Nieuwenhuis (ed), volume 2706 of Lecture Notes in Computer Science, Springer-Verlag, 2003, pp. 46–60

  36. Yoshida, N.: Optimal reduction in weak lambda-calculus with shared environments. Journal of Computer Software, 11(6), 3–18 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maribel Fernández.

Additional information

Projet Logical, Pôle Commun de Recherche en Informatique du plateau de Saclay, CNRS, École Polytechnique, INRIA, Université Paris-Sud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández, M., Mackie, I. & Sinot, FR. Lambda-Calculus with Director Strings. AAECC 15, 393–437 (2005). https://doi.org/10.1007/s00200-005-0169-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00200-005-0169-9

Keywords

Navigation