Forecasting time series by functional PCA. Discussion of several weighted approaches | Computational Statistics Skip to main content
Log in

Forecasting time series by functional PCA. Discussion of several weighted approaches

  • Published:
Computational Statistics Aims and scope Submit manuscript

Summary

In this paper a functional principal component model is applied to forecast a continuous time series that has been observed only at discrete time points not necessarily equally spaced. To take into account the natural order among the sample paths obtained after cutting the series into pieces, a weighted estimation of the principal components is proposed. In order to estimate the weighted functional principal component analysis, a cubic spline interpolation of the sample paths between their discrete observations is performed. Finally, an application with simulated data is developed where model fitting and forecasting results using different types of weightings on equally and unequally spaced data are given and discussed. The forecasting performance of the estimated functional principal component models is also compared with multivariate principal component regression models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aguilera, A.M., Gutiérrez, R., Ocaña, F.A. and Valderrama, M.J. (1995), Computational approaches to estimation in the principal component analysis of a stochastic process, Appl. Stock. Models Data Anal., 11, 279–299.

    Article  MathSciNet  Google Scholar 

  • Aguilera, A.M., Gutiérrez, R. and Valderrama, M.J. (1996), Approximation of estimators in the PCA of a stochastic process using B-splines, Comm. Statist. (Simulation and Computation), 25, 671–691.

    Article  MathSciNet  Google Scholar 

  • Aguilera, A. M., Ocaña, F. A. y Valderrama, M. J. (1997), An approximated principal component prediction model for continuous time stochastic processes, Appl. Stoch. Models Data Anal., 13, 61–72.

    Article  MathSciNet  Google Scholar 

  • Besse, P. and Ramsay, J.O. (1986), Principal component analysis of sample functions, Psychometrika, 51, 285–311.

    Article  MathSciNet  Google Scholar 

  • Besse, P. (1991), Approximation spline de l’analyse en composantes principales d’une variable aléatoire hilbertienne, Annales de la Faculté des Sciences de Toulouse, 12, 329–346.

    Article  Google Scholar 

  • Besse, P. and Cardot, H. (1994), Approximation spline de la prévision d’un processus autorǵressif hilbertien d’ordre 1, Publication du Laboratoire de Statistique et Probabilits de Toulouse, 17.

  • Bosq, D. (1991), Modelization, non-parametric estimation and prediction for continuous time processes, In Nonparametric functional estimation and related topics, Ed. G. Roussas. NATO, ASI Series, 509–529.

  • Castro, P.E., Lawton, W.H. and Sylvestre, E.A. (1986), Principal modes of variation for processes with continuous sample curves, Technometrics, 28, 329–337.

    Article  Google Scholar 

  • Dauxois, J., Pousse, A. and Romain, Y. (1982), Asymptotic theory for the principal component analysis of a vector random function:some applications to statistical inference, J. Multivar. Anal., 12, 136–154.

    Article  MathSciNet  Google Scholar 

  • Deville, J.C. (1974), Méthodes statistiques et numériques de l’analyse harmonique, Annales de l’INSEE, 15, 3–101.

    Google Scholar 

  • Deville, J.C. (1978), Analyse et prevision des series chronologiques multiples non stationnaires, Statist. Anal. Données, 3, 19–29.

    Google Scholar 

  • Jackson, J.E. (1991), A User’s Guide to Principal Components, Wiley, New York.

    Book  Google Scholar 

  • Ramsay, J.O. and Dalzell, C.J. (1991), Some tools for functional data analysis (with discussion), J. R. Statist. Soc. B, 53, 539–572.

    MATH  Google Scholar 

  • Ramsay, J.O., Wang, X. and Flanagan, R. (1995), A functional data analysis of the pinch force of human fingers, Appl. Statist., 44, 17–30.

    Article  Google Scholar 

  • Rice, J.O. and Silverman, B.W. (1991), Estimating the mean and covariance structure nonparametrically when the data are curves, J. R. Statist. Soc. B, 53, 233–243.

    MathSciNet  MATH  Google Scholar 

  • Ramsay, J.O. and Silverman, B.W. (1997), Functional Data Analysis, Springer-Verlag, New York.

    Book  Google Scholar 

  • Saporta, G. (1985), Data analysis for numerical and categorical individual time series, Appl. Stock. Models and Data Anal., 1, 109–119.

    Article  Google Scholar 

  • Silverman, B.W. (1996), Smoothed functional principal components analysis by choice of norm, Ann. Statist., 24, 1–24.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Project PB96-1436, Dirección General de Enseñanza Superior, Ministerio de Educación y Cultura, Spain.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilera, A.M., Ocaña, F.A. & Valderrama, M.J. Forecasting time series by functional PCA. Discussion of several weighted approaches. Computational Statistics 14, 443–467 (1999). https://doi.org/10.1007/s001800050025

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s001800050025

Keywords

Navigation