Maximization of Nonlinear Autocorrelation for Blind Source Separation of Non-stationary Complex Signals | Circuits, Systems, and Signal Processing Skip to main content
Log in

Maximization of Nonlinear Autocorrelation for Blind Source Separation of Non-stationary Complex Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Blind source separation of complex-valued signals has been a vital issue especially in the field of digital communication signal processing. This paper proposes a novel method based on nonlinear autocorrelation to solve the problem. Relying on the temporal structure with nonlinear autocorrelation of the signals, the method has a potential capability of extracting non-stationary complex sources with Gaussian or non-Gaussian distribution. Most traditional methods would fail in separating this kind of sources. We also analyze the stability conditions of the method in theory. Numerical simulations on artificial complex Gaussian data and orthogonal frequency division multiplexing sources corroborate the validity and efficiency of the proposed method. Moreover, with respect to classical methods, including cumulant-based approach using the non-stationarity of variance and complexity pursuit, our method offers equally good results with lower computational cost and better robustness. Finally, experiments for the separation of real communication signals illustrate that our method has good prospects in real-world applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Amari, Natural gradient works efficiently in learning. Neural Comput. 10, 251–276 (1998)

    Article  Google Scholar 

  2. S.I. Amari, A. Cichocki, H. Yang, A new learning algorithm for blind source separation. Adv. Neural Inf. Process. Syst. 8, 757–763 (1996)

    Google Scholar 

  3. A.K. Barros, A. Cichocki, Extraction of specific signals with temporal structure. Neural Comput. 13(9), 1995–2003 (2001)

    Article  MATH  Google Scholar 

  4. A. Belouchrani, K.A. Meraim, J.-F. Cardoso, E. Moulines, A blind source separation technique based on second order statistics. IEEE Trans. Signal Process. 45(2), 434–444 (1997)

    Article  Google Scholar 

  5. E. Bingham, A. Hyvarinen, A fast fixed-point algorithm for independent component analysis of complex valued signals. Int. J. Neural Syst. 10, 1–8 (2000)

    Article  Google Scholar 

  6. E. Bingham, A. Hyvarinen, A fast fixed-point algorithm for independent component analysis of complex valued signals. Int. J. Neural Syst. 10, 1–8 (2000)

    Article  Google Scholar 

  7. P. Comon, C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Applications (Academic Press, New York, 2010)

    Google Scholar 

  8. A. Cichocki, S.-I. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications (Wiley Press, New York, 2002)

    Book  Google Scholar 

  9. J.-F. Cardoso, A. Souloumiac, Blind beamforming for non-Gaussian signals. IEE Proc. F (Communications, Radar and Signal Processing) 140, 362–370 (1993)

    Article  Google Scholar 

  10. J.-F. Cardoso et al., Source separation using higher order moments. Proc. IEEE ICASSP 4, 2109–2112 (1989)

    Google Scholar 

  11. J. Chien, H. Hsieh, Convex divergence ICA for blind source separation. IEEE Trans. Audio Speech Lang. Process. 20(1), 302–313 (2012)

    Article  Google Scholar 

  12. N. Delfosse, P. Loubaton, Adaptive blind separation of independent sources: a deflation approach. Signal Process. 45, 59–83 (1995)

    Article  MATH  Google Scholar 

  13. http://gnuradio.org/redmine/projects/gnuradio/wiki/USRP

  14. http://www.home.agilent.com

  15. A. Hyvarinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley Press, New York, 2001)

    Book  Google Scholar 

  16. K.T. Herring, A.V. Mueller, D.H. Staelin, Blind separation of noisy multivariate data using second-order statistics: remote-sensing applications. IEEE Trans. Geosci. Remote Sens. 47(10), 3406–3415 (2009)

    Article  Google Scholar 

  17. A. Hyvarinen, Blind source separation by nonstationarity of variance: a cumulant-based approach. IEEE Trans. Neural Netw. 12(6), 1471–1474 (2001)

    Article  Google Scholar 

  18. S. Henning, Z. Tiziano, W. Laurenz, An extension of slow feature analysis for nonlinear blind source separation. J. Mach. Learn. Res. 15, 921–947 (2014)

    MathSciNet  Google Scholar 

  19. A. Hyvarinen, A unifying model for blind separation of independent sources. Signal Process. 85(7), 1419–1427 (2005)

    Article  Google Scholar 

  20. A. Hyvärinen, Complexity pursuit: separating interesting components from time-series. Neural Comput. 13(4), 883–898 (2001)

    Article  MATH  Google Scholar 

  21. J. Liu, H. Xu, Y. Wan, On the performance of space-time block coding based on ICA neural networks. Int. Symp. Neural Netw. Dalian 3174, 311–316 (2004)

    Google Scholar 

  22. L. Molgedey, H.G. Schuster, Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72(23), 3634–3637 (1994)

    Article  Google Scholar 

  23. K. Matsuoka, M. Ohya, M. Kawamoto, A neural net for blind separation of nonstationary signals. Neural Netw. 8(3), 411–419 (1995)

    Article  Google Scholar 

  24. M. Novey, T. Adali, On extending the complex fastica algorithm to noncircular sources. IEEE Trans. Signal Process. 56(5), 2148–2154 (2008)

    Article  MathSciNet  Google Scholar 

  25. M. Novey, T. Adali, Complex ICA by negentropy maximization. IEEE Trans. Neural Netw. 19(4), 596–609 (2008)

    Article  Google Scholar 

  26. M. Novey, T. Adali, ICA by maximization of non-Gaussianity using complex functions, in Proceedings of the IEEE Workshop Machine Learning for Signal Processing (MLSP), Mystic, CT (2005)

  27. K.B. Petersen, M.S. Pedersen, The Matrix Cookbook. [Online] Cited 2008-11-10. http://www2.imm.dtu.dk/pubdb/p.php?3274

  28. D.-T. Pham, J.-F. Cardoso, Blind separation of instantaneous mixtures of non-stationary sources. IEEE Trans. Signal Process. 49(9), 1837–1848 (2001)

    Article  MathSciNet  Google Scholar 

  29. T. Ristaniemi, K. Raju, J. Karhunen, E. Oja, Inter-cell interference cancellation in CDMA array systems by independent component analysis, in Proceedings of the 4th International Symposium on Independent Component Analysis and Blind Signal Separation, pp. 739–744 (2003)

  30. J.V. Stone, Blind source separation using temporal predictability. Neural Comput. 13, 1559–1574 (2001)

    Article  MATH  Google Scholar 

  31. Z. Shi, C. Zhang, Fast nonlinear autocorrelation algorithm for source separation. Pattern Recognit. 42(9), 1732–1741 (2009)

    Article  MATH  Google Scholar 

  32. Z. Shi, Z. Jiang, F. Zhou, A fixed-point algorithm for blind source separation with nonlinear autocorrelation. J. Comput. Appl. Math. 223, 908–915 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Z. Shi, H.J. Zhang, Z.G. Jiang, Hybrid linear and nonlinear complexity pursuit for blind source separation. J. Comput. Appl. Math. 236, 3434–3444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Tong, R.-W. Liu, V. Soon, Y.-F. Huang, Indeterminacy and identifiability of blind identification. IEEE Trans. Circuits Syst. 38(5), 499–509 (1991)

    Article  MATH  Google Scholar 

  35. A. Van Den Bos, Complex gradient and Hessian. Proc. Inst. Elect. Eng. Image Signal Process. 141, 380–382 (1994)

    Article  Google Scholar 

  36. J. Wang, C. Zhao, A Semi-blind Detection Algorithm for V-BLAST System (IEEE GLOBECOM, San Francisco, 2003)

    Google Scholar 

  37. H.H. Yang, On-line blind equalization via on-line blind separation. Signal Process. 68(3), 271–281 (1998)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61172061 and 61201242 and the Natural Science Foundation of JiangSu Province in China under Grant No. BK2012057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengcheng Xu.

Appendices

Appendix 1

1.1 Proof of \(\arg \left( {\beta _1^*} \right) =-\theta \) in (14)

By the definition of \(\beta _1 =\frac{\partial J(\mathbf{q}_1 )}{\partial q_1^*}\), we can obtain

$$\begin{aligned} \beta _1&= \sum _k {E\left\{ {g\left( {e^{-j\theta }s_1 } \right) G\left( {e^{j\theta }s_{1,\tau _k }^*} \right) s_1 } \right\} } E\left\{ {G\left( {e^{-j\theta }s_1 } \right) ^{*}G\left( {e^{j\theta }s_{1,\tau _k }^*} \right) ^{*}} \right\} \nonumber \\&\quad +\,E\left\{ {G\left( {e^{-j\theta }s_1 } \right) G\left( {e^{j\theta }s_{1,\tau _k }^*} \right) } \right\} E\left\{ {G\left( {e^{-j\theta }s_1 } \right) ^{*}g\left( {e^{j\theta }s_{1,\tau _k }^*} \right) ^{*}s_{1,\tau _k } } \right\} \nonumber \\ \end{aligned}$$
(21)

According to the approximation of \(\hbox {G}(\cdot \)) in Theorem, we have

$$\begin{aligned} \beta _1&= \sum _k {E\left\{ {\sum _{l=1}^\infty {lc_l \left( {e^{-j\theta }s_1 } \right) ^{l-1}} \sum _{l=0}^\infty {c_l \left( {e^{j\theta }s_{1,\tau _k }^*} \right) ^{l}} s_1 } \right\} }\nonumber \\&\times \, E\left\{ {\sum _{l=0}^\infty {c_l \left( {e^{j\theta }s_1^*} \right) ^{l}} \sum _{l=0}^\infty {c_l \left( {e^{-j\theta }s_{1,\tau _k } } \right) ^{l}} } \right\} \nonumber \\&+\,E\left\{ {\sum _{l=0}^\infty {c_l \left( {e^{-j\theta }s_1 } \right) ^{l}} \sum _{l=0}^\infty {c_l \left( {e^{j\theta }s_{1,\tau _k }^*} \right) ^{l}} } \right\} \nonumber \\&\times \, E\left\{ {\sum _{l=0}^\infty {c_l \left( {e^{j\theta }s_1^*} \right) ^{l}} \sum _{l=1}^\infty {lc_l \left( {e^{-j\theta }s_{1,\tau _k } } \right) ^{l-1}} s_{1,\tau _k } } \right\} \end{aligned}$$
(22)

We multiply \(\beta _{1}\) by \(e^{-j\theta }\) and define \(h_1 =e^{-j\theta }s_1, h_2 =e^{j\theta }s_{1,\tau _k }^*\), then

$$\begin{aligned} e^{-j\theta }\beta _1&= \sum _k {E\left\{ {\sum _{l=1}^\infty {lc_l \left( {h_1 } \right) ^{l-1}} \sum _{l=0}^\infty {c_l \left( {h_2 } \right) ^{l}} h_1 } \right\} } E\left\{ {\sum _{l=0}^\infty {c_l \left( {h_1^*} \right) ^{l}} \sum _{l=0}^\infty {c_l \left( {h_2^*} \right) ^{l}} } \right\} \nonumber \\&+\,E\left\{ {\sum _{l=0}^\infty {c_l \left( {h_1 } \right) ^{l}} \sum _{l=0}^\infty {c_l \left( {h_2 } \right) ^{l}} } \right\} E\left\{ {\sum _{l=0}^\infty {c_l \left( {h_1^*} \right) ^{l}} \sum _{l=1}^\infty {lc_l \left( {h_2^*} \right) ^{l-1}} h_2^*} \right\} \nonumber \\&= \sum _k {E\left\{ {\sum _{l=1}^\infty {lc_l \left( {h_1 } \right) ^{l}} \sum _{l=0}^\infty {c_l \left( {h_2 } \right) ^{l}} } \right\} } E\left\{ {\sum _{l=0}^\infty {c_l \left( {h_1^*} \right) ^{l}} \sum _{l=0}^\infty {c_l \left( {h_2^*} \right) ^{l}} } \right\} \nonumber \\&+\,E\left\{ {\sum _{l=0}^\infty {c_l \left( {h_1 } \right) ^{l}} \sum _{l=0}^\infty {c_l \left( {h_2 } \right) ^{l}} } \right\} E\left\{ {\sum _{l=0}^\infty {c_l \left( {h_1^*} \right) ^{l}} \sum _{l=1}^\infty {lc_l \left( {h_2^*} \right) ^{l}} } \right\} \nonumber \\&= \sum _k {2Re\left( {E\left\{ {\sum _{l=1}^\infty {lc_l \left( {h_1 } \right) ^{l}} \sum _{l=0}^\infty {c_l \left( {h_2 } \right) ^{l}} } \right\} E\left\{ {\sum _{l=0}^\infty {c_l \left( {h_1^*} \right) ^{l}} \sum _{l=0}^\infty {c_l \left( {h_2^*} \right) ^{l}} } \right\} } \right) }\nonumber \\ \end{aligned}$$
(23)

Therefore, we can observe that \(e^{-j\theta }\beta _{1}\) is actually real-valued number, which completely proves \(\arg \left( {\beta _1^*} \right) =-\theta \).

Appendix 2

1.1 Proof of Lemma 1

Since \(a_j =\frac{\partial ^{2}J(\mathbf{q}_i )}{\partial q_j^*\partial q_j }\) (\(\forall j\ne i)\), where \(J(\mathbf{q}_{i})\) denotes the cost function \(J(\mathbf{q})=\sum \limits _k {\left| {E\left\{ {G\left( {y(t)} \right) G(y(t-\tau _k )^{*})} \right\} } \right| ^{2}} \) at the stable point \(\mathbf{q}_i =(0,\ldots , e^{j\theta },\ldots , 0)^{T}\) pointing in the direction of the principal components of \(s_{i}\), we can obtain

$$\begin{aligned} a_j&= \sum _k {E\left\{ {g\left( {e^{-j\theta }s_i } \right) g\left( {e^{j\theta }s_{i,\tau _k }^*} \right) s_j s_{j,\tau _k }^*} \right\} } E\left\{ {G\left( {e^{-j\theta }s_i } \right) ^{*}G\left( {e^{j\theta }s_{i,\tau _k }^*} \right) ^{*}} \right\} \nonumber \\&+\,\left| {E\left\{ {g\left( {e^{-j\theta }s_i } \right) G\left( {e^{j\theta }s_{i,\tau _k }^*} \right) s_j } \right\} } \right| ^{2} \nonumber \\&+\,\left| {E\left\{ {G\left( {e^{-j\theta }s_i } \right) g\left( {e^{j\theta }s_{i,\tau _k }^*} \right) s_{j,\tau _k }^*} \right\} } \right| ^{2}\nonumber \\&+\,E\left\{ {G\left( {e^{-j\theta }s_i } \right) G\left( {e^{j\theta }s_{i,\tau _k }^*} \right) } \right\} E\left\{ {g\left( {e^{-j\theta }s_i } \right) ^{*}g\left( {e^{j\theta }s_{i,\tau _k }^*} \right) ^{*}s_{j,\tau _k } s_j^*} \right\} \nonumber \\ \end{aligned}$$
(24)

Careful inspection reveals that the second-order derivative \(a_j \) is also real-valued number. Taking into account the assumption of Lemma 1 and the zero mean assumption of the source signals, we can get \(a_j =0\). Therefore, from the Theorem, we have the further stability condition: \(\left| {\frac{\partial J(\mathbf{q}_i )}{\partial q_i^*}} \right| -\left| {\frac{\partial ^{2}J(\mathbf{q}_i )}{\partial q_j^*\partial q_j^*}} \right| >0\).

1.2 Proof of Lemma 2

From the definition of \(b_j =\frac{\partial ^{2}J(\mathbf{q}_i )}{\partial q_j^*\partial q_j^*}\) (\(\forall j\ne i)\) and the assumptions of Lemma 1, we have

$$\begin{aligned} b_j&= \sum _k {E\left\{ {g{\prime }\left( {e^{-j\theta }s_i } \right) G\left( {e^{j\theta }s_{i,\tau _k }^*} \right) s_j^2 } \right\} } E\left\{ {G\left( {e^{-j\theta }s_i } \right) ^{*}G\left( {e^{j\theta }s_{i,\tau _k }^*} \right) ^{*}} \right\} \nonumber \\&+\,2E\left\{ {g\left( {e^{-j\theta }s_i } \right) G\left( {e^{j\theta }s_{i,\tau _k }^*} \right) s_j } \right\} E\left\{ {G\left( {e^{-j\theta }s_i } \right) ^{*}g\left( {e^{j\theta }s_{i,\tau _k }^*} \right) ^{*}s_{j,\tau _k } } \right\} \nonumber \\&+\,E\left\{ {G\left( {e^{-j\theta }s_i } \right) G\left( {e^{j\theta }s_{i,\tau _k }^*} \right) } \right\} E\left\{ {G\left( {e^{-j\theta }s_i } \right) ^{*}g{\prime }\left( {e^{j\theta }s_{i,\tau _k }^*} \right) ^{*}s_{j,\tau _k } s_j^*} \right\} \nonumber \\&= \sum _k {E\left\{ {s_j^2 } \right\} E\left\{ {g{\prime }\left( {e^{-j\theta }s_i } \right) G\left( {e^{j\theta }s_{i,\tau _k }^*} \right) } \right\} } \times E\left\{ {G\left( {e^{-j\theta }s_i } \right) ^{*}G\left( {e^{j\theta }s_{i,\tau _k }^*} \right) ^{*}} \right\} \nonumber \\ \end{aligned}$$
(25)

where \(\hbox {g}^{\prime }(\cdot )\) is the derivative of \(\hbox {g}(\cdot \)). As we know, if sources \(\left\{ {s_j } \right\} \) are circular (rotation invariant), the pseudo-covariance \(E\left\{ {s_j^2 } \right\} =0\), which means that \(b_j =0\). Hence, the stability conditions are given by \(\left| {\frac{\partial J(\mathbf{q}_i )}{\partial q_i^*}} \right| \ne 0\) for circular sources and \(\left| {\frac{\partial J(\mathbf{q}_i )}{\partial q_i^*}} \right| -\left| {\frac{\partial ^{2}J(\mathbf{q}_i )}{\partial q_j^*\partial q_j^*}} \right| >0\) for non-circular sources (\(E\left\{ {s_j^2 } \right\} \ne 0)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, P., Shen, Y., Jian, W. et al. Maximization of Nonlinear Autocorrelation for Blind Source Separation of Non-stationary Complex Signals. Circuits Syst Signal Process 34, 3011–3029 (2015). https://doi.org/10.1007/s00034-015-9998-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-9998-3

Keywords

Navigation