Feedback Predictive Control Based on Periodic Invariant Set for Markov Jump Systems | Circuits, Systems, and Signal Processing Skip to main content
Log in

Feedback Predictive Control Based on Periodic Invariant Set for Markov Jump Systems

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a feedback predictive controller design method based on a periodic invariant set is proposed for input/state-constrained Markov jump systems (MJSs). The design procedure is divided into two parts: an offline part and an online part. Firstly, the mode-dependent invariant sets are obtained offline combined with the known transition probability matrix, guaranteeing stochastic stability of the MJS. Then, the periodic invariant set is constructed online by the convex combination of precomputed mode-dependent invariant sets. In this way, we could not only obtain the feedback control sequence based on the periodic invariant set, but also guarantee stochastic stability. This proposed control strategy, which does not directly depend on the jumping modes, could offer more degrees of design freedom and provide a larger stabilizable set. The online variables that need to be solved are numerical parameters, and the online computational burden is reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. E.K. Boukas, A. Benzaouia, Stability of discrete-time linear systems with Markovian jumping parameters and constrained control. IEEE Trans. Autom. Control 47(3), 516–521 (2002)

    Article  MathSciNet  Google Scholar 

  2. Z. Fei, H. Gao, P. Shi, New results on stabilization of Markovian jump systems with time delays. Automatica 45(10), 2300–2306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Karan, P. Shi, C.Y. Kaya, Transition probability bounds for the stochastic stability robustness of continuous- and discrete-time Markovian jump linear systems. Automatica 42(12), 2159–2168 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. M.V. Kothare, V. Balakrishnan, M. Morari, Robust constrained model predictive control using linear matrix inequalities. Automatica 32(10), 1361–1379 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Y.I. Lee, J.S. Lim, Receding horizon output feedback control for constrained uncertain systems using periodic invariance, ICROS-SICE International Joint Conference, 251–255 (2009)

  6. Y.I. Lee, M. Cannon, B. Kouvaritakis, Extended invariance and its use in model predictive control. Automatica 41(12), 2163–2169 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Y.I. Lee, B. Kouvaritakis, Constrained robust model predictive control based on periodic invariance. Automatica 42(12), 2175–2181 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Li, X.J. Wu, Su P.Shi, Sliding mode control with bounded\(L_2 \)gain performance of Markovian jump singular time-delay systems. Automatica 48(8), 1929–1933 (2012)

    Article  MathSciNet  Google Scholar 

  9. F. Liu, Y. Cai, Constrained predictive control of Markov jump linear system based on terminal invariant sets. Acta Autom. Sinica 34(4), 496–499 (2008)

    Article  MathSciNet  Google Scholar 

  10. Y.Q. Liu, F. Liu, N-step off-line MPC design of nonhomogeneous Markov jump systems: a suboptimal case. J. Frankl. Inst. 351, 174–186 (2014)

    Article  MATH  Google Scholar 

  11. J.B. Lu, D.W. Li, Y.G. Xi, Constrained model predictive control synthesis for uncertain discrete-time Markovian jump linear systems. IET Control Theory Appl 7(5), 707–719 (2013)

    Article  MathSciNet  Google Scholar 

  12. M. Mahmoud, P. Shi, Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters. IEEE Trans. Circuits Syst. 50(1), 98–105 (2003)

    Article  MathSciNet  Google Scholar 

  13. D.Q. Mayne, J.B. Rawling, C.V. Bao, P.O.M. Scokaert, Constrained model predictive control: stability and optimality. Automatica 36(6), 789–814 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. B.G. Park, W.H. Kwon, J.W. Lee, Robust receding horizon control of discrete-time Markovian jump uncertain systems. IEICE Trans. Fundam. E84-A(9), 2272–2279 (2001).

  15. B.G. Park, W.H. Kwon, Robust one-step receding horizon control of discrete-time Markovian jump uncertain systems. Automatica 38(1), 1229–1235 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. A.N. Vargas, J.B.R. do Val, E.F. Costa, Receding horizon control of discrete-time Markovian jump linear systems subject to noise and unobserved state chain. In 43\(^{rd }\)IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 14–17 December 2004, USA: IEEE, pp. 4381–4386

  17. A.N. Vargas, W. Furloni, J.B.R. do Val, Constranied model predictive control of jump linear systems with noise and non-observed Markov state. In American control Conference, Minneapolis, Minnesota, USA, 14–16 June 2006, USA: IEEE, pp. 12626–12631.

  18. A.N. Vargas, W. Furloni, J.B.R. Do Val, Second moment constraints and the control problem of Markov jump linear systems. Numer. Linear Algebra Appl. 20(2), 357–368 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. V. Vesely, D. Rosinova, T.N. Quang, Networked output feedback robust predictive controller design. Int. J. Innov. Comput. Inf. Control 9(10), 3941–3953 (2013)

    Google Scholar 

  20. J.W. Wen, F. Liu, Robust receding horizon dial-mode control for Markov jump systems. Electric Mach Control 13(6), 919–925 (2009)

    Google Scholar 

  21. J.W. Wen, F. Liu, Feedback predictive control for uncertain jump systems. Control Decis. 25(6), 916–920 (2010)

    MathSciNet  Google Scholar 

  22. J.W. Wen, F. Liu, Receding horizon \(H_\infty \)control for discrete-time Markovian jump linear systems. Syst. Eng. Electron. 22(2), 292–299 (2011)

    Article  MathSciNet  Google Scholar 

  23. L.G. Wu, X.J. Su, P. Shi, Output feedback control of Markovian Jump repeated scalar nonlinear systems. IEEE Trans. Autom. Control 59(1), 199–204 (2014)

    Article  MathSciNet  Google Scholar 

  24. W. Yang, L. Zhang, P. Shi, Y. Zhu, Model reduction for a class of nonstationary Markov jump linear systems. J. Frankl. Inst. 349(7), 2445–2460 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. R.N. Yang, G.P. Liu, P. Shi, Predictive output feedback control for networked control systems. IEEE Trans. Ind. Electron. 61(1), 512–520 (2014)

    Article  Google Scholar 

  26. L. Zhang, E.K. Boukas, Mode-dependent \(H_\infty \)control filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities. Automatica 45(6), 1462–1467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. L.X. Zhang, E.K. Boukas, Stability and stabilization of Markovian jump linear systems with party unknown transition probabilities. Automatica 45(2), 416–421 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingong Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, J., Liu, F. Feedback Predictive Control Based on Periodic Invariant Set for Markov Jump Systems. Circuits Syst Signal Process 34, 2681–2693 (2015). https://doi.org/10.1007/s00034-014-9936-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9936-9

Keywords

Navigation