Abstract
This paper deals with new variable metric algorithms for nonsmooth optimization problems, so-called “adaptive algorithms”. The essence of these are as follows: there are two simultaneously working gradient algorithms, the first in the main space, the second with respect to the matrices that modify the space variables. The convergence theorems for these algorithms are given for different cases.
Preview
Unable to display preview. Download preview PDF.
References
Eaves, B.C., Zangwill, Generalized Cutting Plane Algorithms, SIAM Journal on Control, 9, pp. 529–542, 1971.
Bertsekas, D.P., and Mitter, S.K., A Descent Numerical Method for Optimization Problems with Non-Differentiable Cost Functionals, SIAM Journal on Control, 11, pp. 637–652, 1973.
Wolfe, P., A Method of Conjugate Subgradients for Minimizing Nondifferentiable Functions, Mathematical Programming Study 3, pp. 145–173, 1975.
Lemarechal, C., Strodiat, J.J. and Bihain, A., On a Bundle Algorithm for Nonsmooth Optimization, Nonlinear Programming 4, Edited by O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, Academic Press, New York, 1981.
Mifflin, R., A Modification and an Extension of Lemarechal’s Algorithm for Nonsmooth Minimization, Mathematical Programming Study 17, pp. 77–90, 1982.
Kiwiel, K.C., Methods of Descent for Nondifferentiable Optimization, Springer-Verlag, Berlin, 1985.
Dem’janov, V.F., and Vasil’ev, L.V., Nondifferentiable Optimization, Springer, New York, 1985.
Robinson, S.M., Newton’s Method for a Class of Nonsmooth Functions, SIAM Journal on Numerical Analysis, to appear.
Shor, N.Z., On a Structure of the Algorithms for Numerical Solution of the Optimal Planning and Designing, Kiev, PhD Thesis, 1964 (in Russian).
Dennis, J.N., and Moré, J.J., Quasi-Newton Methods, Motivation and Theory, SIAM Review, 19, pp. 46–89, 1977.
Shor, N.Z., Minimization Methods for Non-Differentiable Functions, Springer-Verlag, 1985.
Poljak, B.T., Subgradient Methods: A Survey of Soviet Research, Proceedings of a IIASA Workshop “Nonsmooth Optimization,” Edited by C. Lernarechal and R. Mifflin, 1977.
Uryas’ev, S.P., Stochastic Quasigradient Algorithms Adaptively Controlled Parameters, IIASA, Laxenburg, Austria, WP-86-32, 1986.
Ermoliev, Yu., and Wets, R.J.-B., eds.Numerical Techiques for Stochastic Optimization, Springer-Verlag, 1988.
Uryas’ev, S.P., Adaptive Variable Metric Algorithms for Nonsmooth Optimization Problems, IIASA, Laxenburg, Austria, WP-88-60, 1988.
Rockafellar, R.T.Convex Analysis, Princeton Mathematics, Vol. 28, Princeton Univ. Press, 1970.
Pshenychnyi, B.N., Necessary Conditions for an Extremum. Dekker, New York, 1971.
Nesterov, Yu.E., Minimization Methods for Nonsmooth Convex and Quasiconvex Functions, Economika i mat. metodi, USSR, XX, pp. 519–531, 1984 (in Russian).
Nurminski, E., Numerical Methods for Solving Deterministic and Stochastic Minimax Problems, Naukova Dumka, Kiev, 1979 (in Russian).
Hoffman, A., Weak Convex Functions, Multifunctions and Optimization, 27. IWK d. TH Ilmenau, Heft 5, pp. 33–36, 1982.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1990 Springer-Verlag
About this paper
Cite this paper
Uryas’ev, S.P. (1990). Adaptive variable metric methods for nondifferentiable optimization problems. In: Bensoussan, A., Lions, J.L. (eds) Analysis and Optimization of Systes. Lecture Notes in Control and Information Sciences, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120066
Download citation
DOI: https://doi.org/10.1007/BFb0120066
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-52630-8
Online ISBN: 978-3-540-47085-4
eBook Packages: Springer Book Archive