Adaptive variable metric methods for nondifferentiable optimization problems | SpringerLink
Skip to main content

Adaptive variable metric methods for nondifferentiable optimization problems

  • Nonlinear Programming
  • Conference paper
  • First Online:
Analysis and Optimization of Systes

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 144))

Abstract

This paper deals with new variable metric algorithms for nonsmooth optimization problems, so-called “adaptive algorithms”. The essence of these are as follows: there are two simultaneously working gradient algorithms, the first in the main space, the second with respect to the matrices that modify the space variables. The convergence theorems for these algorithms are given for different cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eaves, B.C., Zangwill, Generalized Cutting Plane Algorithms, SIAM Journal on Control, 9, pp. 529–542, 1971.

    Article  MathSciNet  Google Scholar 

  2. Bertsekas, D.P., and Mitter, S.K., A Descent Numerical Method for Optimization Problems with Non-Differentiable Cost Functionals, SIAM Journal on Control, 11, pp. 637–652, 1973.

    Article  MATH  MathSciNet  Google Scholar 

  3. Wolfe, P., A Method of Conjugate Subgradients for Minimizing Nondifferentiable Functions, Mathematical Programming Study 3, pp. 145–173, 1975.

    MathSciNet  Google Scholar 

  4. Lemarechal, C., Strodiat, J.J. and Bihain, A., On a Bundle Algorithm for Nonsmooth Optimization, Nonlinear Programming 4, Edited by O.L. Mangasarian, R.R. Meyer, and S.M. Robinson, Academic Press, New York, 1981.

    Google Scholar 

  5. Mifflin, R., A Modification and an Extension of Lemarechal’s Algorithm for Nonsmooth Minimization, Mathematical Programming Study 17, pp. 77–90, 1982.

    MATH  MathSciNet  Google Scholar 

  6. Kiwiel, K.C., Methods of Descent for Nondifferentiable Optimization, Springer-Verlag, Berlin, 1985.

    MATH  Google Scholar 

  7. Dem’janov, V.F., and Vasil’ev, L.V., Nondifferentiable Optimization, Springer, New York, 1985.

    Google Scholar 

  8. Robinson, S.M., Newton’s Method for a Class of Nonsmooth Functions, SIAM Journal on Numerical Analysis, to appear.

    Google Scholar 

  9. Shor, N.Z., On a Structure of the Algorithms for Numerical Solution of the Optimal Planning and Designing, Kiev, PhD Thesis, 1964 (in Russian).

    Google Scholar 

  10. Dennis, J.N., and Moré, J.J., Quasi-Newton Methods, Motivation and Theory, SIAM Review, 19, pp. 46–89, 1977.

    Article  MATH  MathSciNet  Google Scholar 

  11. Shor, N.Z., Minimization Methods for Non-Differentiable Functions, Springer-Verlag, 1985.

    Google Scholar 

  12. Poljak, B.T., Subgradient Methods: A Survey of Soviet Research, Proceedings of a IIASA Workshop “Nonsmooth Optimization,” Edited by C. Lernarechal and R. Mifflin, 1977.

    Google Scholar 

  13. Uryas’ev, S.P., Stochastic Quasigradient Algorithms Adaptively Controlled Parameters, IIASA, Laxenburg, Austria, WP-86-32, 1986.

    Google Scholar 

  14. Ermoliev, Yu., and Wets, R.J.-B., eds.Numerical Techiques for Stochastic Optimization, Springer-Verlag, 1988.

    Google Scholar 

  15. Uryas’ev, S.P., Adaptive Variable Metric Algorithms for Nonsmooth Optimization Problems, IIASA, Laxenburg, Austria, WP-88-60, 1988.

    Google Scholar 

  16. Rockafellar, R.T.Convex Analysis, Princeton Mathematics, Vol. 28, Princeton Univ. Press, 1970.

    Google Scholar 

  17. Pshenychnyi, B.N., Necessary Conditions for an Extremum. Dekker, New York, 1971.

    Google Scholar 

  18. Nesterov, Yu.E., Minimization Methods for Nonsmooth Convex and Quasiconvex Functions, Economika i mat. metodi, USSR, XX, pp. 519–531, 1984 (in Russian).

    MathSciNet  Google Scholar 

  19. Nurminski, E., Numerical Methods for Solving Deterministic and Stochastic Minimax Problems, Naukova Dumka, Kiev, 1979 (in Russian).

    Google Scholar 

  20. Hoffman, A., Weak Convex Functions, Multifunctions and Optimization, 27. IWK d. TH Ilmenau, Heft 5, pp. 33–36, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

A. Bensoussan J. L. Lions

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag

About this paper

Cite this paper

Uryas’ev, S.P. (1990). Adaptive variable metric methods for nondifferentiable optimization problems. In: Bensoussan, A., Lions, J.L. (eds) Analysis and Optimization of Systes. Lecture Notes in Control and Information Sciences, vol 144. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0120066

Download citation

  • DOI: https://doi.org/10.1007/BFb0120066

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-52630-8

  • Online ISBN: 978-3-540-47085-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics