Identity and existence in intuitionistic logic | SpringerLink
Skip to main content

Identity and existence in intuitionistic logic

  • Chapter
  • First Online:
Applications of Sheaves

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 753))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6863
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8579
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, 1967

    Google Scholar 

  2. Church, A.: A formulation of the simple theory of types. J.S.L. 5, 56–68 (1940)

    MathSciNet  MATH  Google Scholar 

  3. Church, A.: Introduction to Mathematical Logic. Princeton U.P., 1956

    Google Scholar 

  4. Dalen, D. van, Statman, R.: Equality in the presence of apartness. To appear

    Google Scholar 

  5. Diaconescu, R.: Axiom of choice and complementation. Proc. Amer. Math. Soc. 51, 175–178 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dummett, M.: Elements of Intuitionism. Oxford U.P. 1977

    Google Scholar 

  7. Fourman, M.P.: Connections between category theory and logic. D.Phil. thesis: Oxford 1974

    Google Scholar 

  8. Fourman, M.P.: The logic of topoi, in Handbook of Mathematical Logic, (Ed. Barwise, J.). North Holland 1977, 1053–1090

    Google Scholar 

  9. Fourman, M.P., Hyland, J.M.E.: Sheaf models for analysis. This volume

    Google Scholar 

  10. Fourman, M.P., Scott, D.S.: Sheaves and logic. This volume

    Google Scholar 

  11. Gabbay, D.M.: On 2nd order intuitionistic propositional calculus with full comprehension. Archiv für mathematische Logic und Grundlagen-forschung, 16, 177–186 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gray, J.W.: The meeting of the midwest category seminar in Zurich, August 1970, in Reports of the Midwest Category Seminar V (Ed. Gray, J.W.). Lecture Notes in Mathematics, 195. Berlin and New York: Springer 1971

    Chapter  Google Scholar 

  13. Grayson, R.J.: Heyting-valued models for intuitionistic set theory. This volume

    Google Scholar 

  14. Henkin, L.: Completeness in the theory of types. J.S.L. 15, 81–91 (1950)

    MathSciNet  MATH  Google Scholar 

  15. Henkin, L.: A theory of propositional types. Fund. Math. 52, 323–344 (1963)

    MathSciNet  MATH  Google Scholar 

  16. Johnstone, P.T.: Topos Theory. Academic Press 1977

    Google Scholar 

  17. MacLane, S.: Categories for the Working Mathematician. Springer 1971

    Google Scholar 

  18. Makkai, M., Reyes, G.E.: First-order Categorical Logic. Lecture Notes in Mathematics, 611. Berlin and New York: Springer 1977

    Book  MATH  Google Scholar 

  19. Mikkelsen, C.J.: Lattice-theoretic and logical aspects of elementary topoi. Aarhus Universitet, Various Publications Series 25 (1976)

    Google Scholar 

  20. Prawitz, D.: Natural Deduction, a Proof-theoretical Study. Uppsala 1965

    Google Scholar 

  21. Scott, D.S.: Existence and description in formal logic, in Bertrand Russell, Philosopher of the Century (Ed. Schoenmann). London: Allen and Unwin 1967, 181–200

    Google Scholar 

  22. Smorynski, C.: Elementary intuitionistic theories. J.S.L. 38, 102–134 (1973)

    MathSciNet  MATH  Google Scholar 

  23. Smorynski, C.: Applications of Kripke models, in Metamathematical investigation of intuitionistic arithmetic and analysis. Lecture Notes in Mathematics, 344. (Ed. Troelstra). Berlin and New York: Springer 1973

    Chapter  Google Scholar 

  24. Smorynski, C.: On axiomatizing fragments. J.S.L., 42, 530–544 (1977)

    MathSciNet  MATH  Google Scholar 

  25. Stenlund, S.: Descriptions in intuitionistic logic, in Proceeding of the Third Scandinavian Logic Symposium (Ed. Kanger). North Holland, 1975, 197–212

    Google Scholar 

  26. Tarski, A.: On the primitive term of logistic, in Logic, Semantics, Metamathematics. Oxford, 1956, 1–23

    Google Scholar 

  27. Troelstra, A.: Aspects of constructive mathematics. In Handbook of Mathematical Logic (ed. Barwise, J.). North-Holland 1977

    Google Scholar 

  28. Troelstra, A.: The interplay between logic and mathematics: intuitionism. Preprint, University of Amsterdam, 1978

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael Fourman Christopher Mulvey Dana Scott

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag

About this chapter

Cite this chapter

Scott, D. (1979). Identity and existence in intuitionistic logic. In: Fourman, M., Mulvey, C., Scott, D. (eds) Applications of Sheaves. Lecture Notes in Mathematics, vol 753. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0061839

Download citation

  • DOI: https://doi.org/10.1007/BFb0061839

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09564-4

  • Online ISBN: 978-3-540-34849-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics