Detecting unsolvable queries for definite logic programs | SpringerLink
Skip to main content

Detecting unsolvable queries for definite logic programs

  • Conference paper
  • First Online:
Principles of Declarative Programming (ALP 1998, PLILP 1998)

Abstract

In logic programming, almost no work has been done so far on proving that certain queries cannot succeed. Work in this direction could be useful for queries which seem to be non-terminating. Such queries are not exceptional, e.g. in planning problems. The paper develops some methods, based on abduction, goal-directedness, tabulation, and constraint techniques, for proving failure of queries for definite logic programs. It also reports some experiments with various tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Ade and M. Denecker. Abductive inductive logic programming. In Proc. IJCAI'95, pages 201–1209. Morgan Kaufman, 1995.

    Google Scholar 

  2. K.R. Apt, R.N. Bol, and J.W. Klop. On the safe termination of Prolog programs. In Proc. ICLP'89, pages 353–368, Lisbon, June 1989. MIT Press.

    Google Scholar 

  3. R.N. Bol, K.R. Apt, and J.W. Klop. An analysis of loop checking mechanisms for logic programs. Theoretical Computer Science, 86(1):35–79, august 1991.

    Article  MATH  MathSciNet  Google Scholar 

  4. M.P. Bonacina and J. Hsiang. On rewrite programs: semantics and relationship with Prolog. J. Logic Programming, 14(1&2):155–180, October 1992.

    Article  MATH  MathSciNet  Google Scholar 

  5. W. Charatonik and A. Podelski. Directional type inference for logic programs. In Proc. SAS'98, LNCS, Pisa, Italy, 1998. To appear.

    Google Scholar 

  6. M. Codish and B. Demoen. Analysing logic programs using “prop”-ositional logic programs and a magic wand. J. Logic Programming, 25(3):249–274, December 1995.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. De Schreye and S. Decorte. Termination of logic programs: the never-ending story. J. Logic Programming, 19 & 20:199–260, may/July 1994.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. A. de Waal, M. Denecker, M. Bruynooghe, and M. Thielscher. The generation of pre-interpretations for detecting unsolvable planning problems. In Proc. IJCAI Workshop on Model based Automated reasoning, pages 103–112, 1997.

    Google Scholar 

  9. M. Denecker and D. De Schreye. SLDNFA: an abductive procedure for abductive logic programs. J. Logic Programming, 34(2):201–226, Februari 1998.

    Article  MathSciNet  Google Scholar 

  10. J. Gallagher, D. Boulanger, and H. Sağlam. Practical model-based static analysis for definite logic programs. In Proc. ILPS'95, pages 351–365, Portland, Oregon, December 1995. MIT Press.

    Google Scholar 

  11. J. P. Gallagher and D.A. de Waal. Fast and precise regular approximations of logic programs,. In Proc. ICLP94, pages 599–613. MIT Press, 1994.

    Google Scholar 

  12. N. Heintze. Set based program analysis. PhD thesis, School of Computer Science, Carnegie Mellon University, 1992.

    Google Scholar 

  13. Michael Leuschel, Danny De Schreye, and André de Waal. A conceptual embedding of folding into partial deduction: Towards a maximal integration. In Proc. JICSLP'96, pages 319–332, Bonn, Germany, September 1996. MIT Press.

    Google Scholar 

  14. K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive database engine. In Proc. SIGMOD 1994 Conf. ACM. Acm Press, 1994.

    Google Scholar 

  15. Y. D. Shen. An extended variant of atoms loop check for positive logic programs. New Generation Computing, 15(2):187–203, 1997.

    Article  Google Scholar 

  16. J. Slaney. Finder: Finite domain enumerator system description. Technical Report TR-ARP-2-94, Centre for Information Science Research, Australian National University, Australia, 1994. Also in Proc. CADE-12.

    Google Scholar 

  17. J. Slaney. Finder — finite domain enumerator — version 3.0 — notes and guide. Technical report, Centre for Information Science Research, Australian National University, Australia, 1997.

    Google Scholar 

  18. Swedish Institute of Computer Science. SICSTUS Prolog User's Manual, november 1997.

    Google Scholar 

  19. H. Tamaki and T. Sato. OLD resolution with tabulation. In Proceedings ICLP'86, LNCS, pages 84–98, London, 1986. Springer-Verlag.

    Google Scholar 

  20. P. Van Hentenryck. Constraint Satisfaction in Logic Programming. The MIT press, 1989.

    Google Scholar 

  21. David S. Warren. Memoing for Logic Programs. Communications of the ACM, 35(3):93–111, March 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Catuscia Palamidessi Hugh Glaser Karl Meinke

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bruynooghe, M., Vandecasteele, H., de Waal, D.A., Denecker, M. (1998). Detecting unsolvable queries for definite logic programs. In: Palamidessi, C., Glaser, H., Meinke, K. (eds) Principles of Declarative Programming. ALP PLILP 1998 1998. Lecture Notes in Computer Science, vol 1490. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056611

Download citation

  • DOI: https://doi.org/10.1007/BFb0056611

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65012-6

  • Online ISBN: 978-3-540-49766-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics