Application of fuzzy rule induction to data mining | SpringerLink
Skip to main content

Application of fuzzy rule induction to data mining

  • Conference paper
  • First Online:
Flexible Query Answering Systems (FQAS 1998)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1495))

Included in the following conference series:

Abstract

In this paper, a data mining process to induce a set of fuzzy rules from a database is presented. This process is based on the construction of fuzzy decision trees. We present a method to construct fuzzy decision trees and a method to use them to classify new examples. In presence of databases, prerequisites for training sets are introduced to generate a good subset of data that will enable us to construct a fuzzy decision tree. Moreover, we present different kinds of rules that can be induced by means of the construction of a decision tree, and we discuss some possible uses of such knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Adriaans and D. Zantinge. Data mining. Addison-Wesley, 1996.

    Google Scholar 

  2. R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance perspective. IEEE Transactions on Knowledge and Data Engineering, 5(6):914–925, December 1993.

    Article  Google Scholar 

  3. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In Proceedings of the ACM-SIGMOD International Conference on Management of Data, pages 207–216, Washington DC, USA, May 1993.

    Google Scholar 

  4. B. Bouchon-Meunier, C. Marsala, and M. Ramdani. Learning from imperfect data. In D. Dubois, H. Prade, and R. R. Yager, editors, Fuzzy Information Engineering: a Guided Tour of Applications, pages 139–148. John Wileys and Sons, 1997.

    Google Scholar 

  5. B. Bouchon-Meunier, M. Rifqi, and S. Bothorel. Towards general measures of comparison of objects. Fuzzy Sets and Systems, 84(2):143–153, December 1996.

    Article  MATH  MathSciNet  Google Scholar 

  6. X. Boyen and L. Wehenkel. Automatic induction of continuous decision trees. In Proceedings of the 6th International Conference IPMU, volume 1, pages 419–424, Granada, Spain, July 1996.

    Google Scholar 

  7. L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification And Regression Trees. Chapman and Hall, New York, 1984.

    Google Scholar 

  8. I. A. Chen. Query answering using discovered rules. In S. Y. W. Su, editor, Proceedinds of the 12th International Conference on Data Engineering, pages 402–411, New Orleans, Louisiana, USA, February 1996. IEEE Computer Society Press.

    Google Scholar 

  9. C. Marsala, B. Bouchon-Meunier. Fuzzy partioning using mathematical morphology in a learning scheme. In Proceedings of the 5th IEEE Int. Conf. on Fuzzy Systems, volume 2, pages 1512–1517, New Orleans, USA, September 1996.

    Google Scholar 

  10. J. Han and Y. Fu. Exploration of the power of attribute-oriented induction in data mining. In U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Knowledge discovery and data mining, chapter 16, pages 151–170. AAAI Press — MIT Press, 1996.

    Google Scholar 

  11. X. Hu and N. Cercone. Mining knowledge rules from databases: A rough set approach. In S. Y. W. Su, editor, Proceedinds of the 12th International Conference on Data Engineering, pages 96–105, New Orleans, Louisiana, USA, February 1996. IEEE Computer Society Press.

    Google Scholar 

  12. B. Lent, A. Swami, and J. Widom. Clustering association rules. In Proceedinds of the 13th International Conference on Data Engineering, pages 220–231, Birmingham, UK, April 1997. IEEE Computer Society Press.

    Google Scholar 

  13. C. Marsala. Apprentissage inductif en présence de données imprécises: construction et utilisation d'arbres de décision flous. Thèse de doctorat, Université Pierre et Marie Curie, Paris, France, Janvier 1998. Rapport Lip6 nℴ 1998/014.

    Google Scholar 

  14. J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):86–106, 1986.

    Google Scholar 

  15. M. Ramdani. Une approche floue pour traiter les valeurs numériques en apprentissage. In Journées Francophones d'apprentissage et d'explication des connaissances, 1992.

    Google Scholar 

  16. S. Shekhar, B. Hamidzadeh, A. Kohli, and M. Coyle. Learning transformation rules for semantic query optimization: A data-driven approach. IEEE Transactions on Knowledge and Data Engineering, 5(6):950–964, December 1993.

    Article  Google Scholar 

  17. M. Umano, H. Okamoto, I. Hatono, H. Tamura, F. Kawachi, S. Umedzu, and J. Kinoshita. Fuzzy decision trees by fuzzy ID3 algorithm and its application to diagnosis systems. In Proceedings of the 3rd IEEE Conference on Fuzzy Systems, volume 3, pages 2113–2118, Orlando, June 1994.

    Google Scholar 

  18. Y. Yuan and M. J. Shaw. Induction of fuzzy decision trees. Fuzzy Sets and systems, 69:125–139, 1995.

    Article  MathSciNet  Google Scholar 

  19. L. A. Zadeh. Probability measures of fuzzy events. Journal Math. Anal. Applic, 23, 1968. reprinted in “Fuzzy Sets and Applications: selected papers by L. A. Zadeh”, R. R. Yager, S. Ovchinnikov, R. M. Tong and H. T. Nguyen eds, pp. 45–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Troels Andreasen Henning Christiansen Henrik Legind Larsen

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Marsala, C. (1998). Application of fuzzy rule induction to data mining. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds) Flexible Query Answering Systems. FQAS 1998. Lecture Notes in Computer Science, vol 1495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056007

Download citation

  • DOI: https://doi.org/10.1007/BFb0056007

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65082-9

  • Online ISBN: 978-3-540-49655-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics