Abstract
In this paper, we show how case-based reasoning (CBR) techniques can be applied to document retrieval. The fundamental idea is to automatically convert textual documents into appropriate case representations and use these to retrieve relevant documents in a problem situation. In contrast to Information Retrieval techniques, we assume that a Textual CBR system focuses on a particular domain and thus can employ knowledge from that domain. We give an overview over our approach to Textual CBR, describe a particular application project, and evaluate the performance of the system.
Preview
Unable to display preview. Download preview PDF.
References
Agnar Aamodt and Enric Plaza, ‘Case-based reasoning: foundational issues, methodological variations, and system approaches', AI Communications, 7(1), 39–59, (1994).
Robin Burke, Kristian Hammond, Vladimir Kulyukin, Steven Lytinen, Noriko Tomuro, and Scott Schoenberg, ‘Question Answering from Frequently Asked Question Files', AI Magazine, 18(2), 57–66, (1997).
Jody J Daniels, Retrieval of Passages for Information Reduction, Ph.D. dissertation, University of Massachusetts at Amherst, 1997.
Jody J Daniels and Edwina L Rissland, ‘What You Saw Is What You Want: Using Cases to Seed Information', In Leake and Plaza [8], pp. 325–336.
Lothar Gierl and Mario Lenz, eds. Proceedings 6th German Workshop on Case-Based Reasoning, IMIB Series Vol. 7, Rostock, 1998. Inst. fuer Medizinische Informatik und Biometrie, University of Rostock.
Günther Görz and Steffen Hölldobler, eds. KI-96: Advances in Artificial Intelligence, Lecture Notes in Artificial Intelligence, 1137. Springer Verlag, 1996.
Mirjam Kunze and Andre Hübner, ‘CBR on Semi-structured Documents: The ExperienceBook and the FAllQ Project', in Proceedings 6th German Workshop on CBR, (1998).
David B Leake and Enric Plaza, eds. Case-Based Reasoning Research and Development, Proceedings ICCBR-97, Lecture Notes in Artificial Intelligence, 1266. Springer Verlag, 1997.
Mario Lenz, ‘Textual CBR and Information Retrieval — A Comparison', In Gierl and Lenz [5].
Mario Lenz and Hans-Dieter Burkhard, ‘Case Retrieval Nets: Basic ideas and extensions', In Görz and Hölldobler [6], pp. 227–239.
Mario Lenz and Hans-Dieter Burkhard, ‘CBR for Document Retrieval — The FAllQ Project', In Leake and Plaza [8], pp. 84–93.
Mario Lenz, Hans-Dieter Burkhard, Petra Pirk, Eric Auriol, and Michel Manago, ‘CBR for Diagnosis and Decision Support', AI Communications, 9(3), 138–146, (1996).
G A Miller, ‘Wordnet: A lexical database for english', Communications of the ACM, 38(11), 39–41, (1995).
Michael M. Richter. The knowledge contained in similarity measures. Invited Talk at ICCBR-95, 1995. http://wwwyagr.informatik.unikl.de/~lsa/CBR/Richtericcbr95remarks.html.
Ellen Riloff and Wendy Lehnert, ‘Information extraction as a basis for high-precision text classification', ACM Transactions on Information Systems, 12(3), 296–333, (1994).
Gerard Salton and M. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, New York, 1983.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1998 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lenz, M., Hübner, A., Kunze, M. (1998). Question answering with Textual CBR. In: Andreasen, T., Christiansen, H., Larsen, H.L. (eds) Flexible Query Answering Systems. FQAS 1998. Lecture Notes in Computer Science, vol 1495. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0056005
Download citation
DOI: https://doi.org/10.1007/BFb0056005
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-65082-9
Online ISBN: 978-3-540-49655-7
eBook Packages: Springer Book Archive