A relation between sparse and printable sets in NSPACE(log n) | SpringerLink
Skip to main content

A relation between sparse and printable sets in NSPACE(log n)

  • Chapter
  • First Online:
Foundations of Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1337))

  • 272 Accesses

Abstract

For the polynomial time classes NPsparse and NPprint it is known that these classes coincide if and only if nondeterministic exponential time is closed under complement ([Ha Ye 84]). Transfering this result to logarithmic space classes would lead to an equality of sparse and printable sets in NSPACE(log n) if and only if nondeterministic space classes are closed under complement. We know that space classes are closed under complement, so unfortunately the techniques that work in the polynomial time case are useless for logarithmic space. In this paper we want to investigate some relations between sparse sets and printable sets in NSPACE(log n). We show that separating NL-printable sets from those sparse sets in NSPACE(log n) that can be recognized by 1-way machines also separates 2-way sparse sets from these 1-way sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Allender: The complexity of sparse sets in P, Proc. of the 1st Structure in Complexity Theory Conference, 1986, Lect. Notes in Comput. Sci. 223, 1–11.

    MATH  MathSciNet  Google Scholar 

  2. E. Allender, R.S. Rubinstein: P-printable sets, SIAM Journ. Comput. 17,6 (1988), 1193–1202.

    Article  MathSciNet  Google Scholar 

  3. P. Berman: Relationships between density and deterministic complexity on NP complete languages, 5th ICALP 1978, Udine, Italy, Lect. Notes in Comput. Sci. 62, 1978, 63–71.

    MATH  Google Scholar 

  4. P. Berman, J. Hartmanis: On isomorphisms and density of NP and other complete sets, SIAM Journ. of Computing 6 (1977), 305–322.

    Article  MathSciNet  Google Scholar 

  5. J. Cai, D. Sivakumar: The resolution of a Hartmanis conjecture, UBCS-TR 95-30, Computer Science Dept., University at Buffalo, 1995.

    Google Scholar 

  6. J. Cai, D. Sivakumar: Resolution of Hartmanis' Conjecture fo NL-hard sparse sets, UBSC-TR 95-40, Computer Science Dept., University at Buffalo, 1995

    Google Scholar 

  7. L. Fortnow, J. Goldsmith, M.A. Levy, S. Mahaney: L-printable sets, 11th Conference on Comput. Complexity, (1996), 97–106

    Google Scholar 

  8. S. Fortune: A note on sparse complete sets, SIAM Journ. of Computing 8 (1979), 431–433.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Hartmanis: On log-tape isomorphisms of complete sets, Theoretical Computer Science 7, (1978), 273–286.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Hartmanis: Some Observations about Relativizations of Space Bounded Computations, Bull. European Association for Theoretical Computer Science 33, (1988), 82–92.

    Google Scholar 

  11. J. Hartmanis, Y. Yesha: Computation times of NP sets of different densities, Theoretical Computer Science 34 (1984), 17–32.

    Article  MathSciNet  Google Scholar 

  12. J. Hopcroft, J. Ullman: Some results on tape-bounded Turing machines, Journal of the ACM 16, (1969), 168–177.

    Article  MathSciNet  Google Scholar 

  13. N. Immerman: Nondeterministic space is closed under complement, Techn. Report, Yale University, YALEU/DCS/TR 552, July 1987.

    Google Scholar 

  14. B. Jenner, B. Kirsig: Alternierung und logarithmischer Platz, Dissertation, FB Informatik, Universität Hamburg, 1989.

    Google Scholar 

  15. S.R. Mahaney: Sparse complete sets for NP: solution of a conjecture by Berman and Hartmanis, Journ. of Comput. System Sci. 25, (1982), 130–143.

    Article  MATH  MathSciNet  Google Scholar 

  16. R. Szelepcsényi: The method of forcing for nondeterministic automata, Bull. European Association for Theoretical Computer Science 33, (Oct 1987), 96–100.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Freksa Matthias Jantzen Rüdiger Valk

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirsig, B. (1997). A relation between sparse and printable sets in NSPACE(log n). In: Freksa, C., Jantzen, M., Valk, R. (eds) Foundations of Computer Science. Lecture Notes in Computer Science, vol 1337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0052086

Download citation

  • DOI: https://doi.org/10.1007/BFb0052086

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63746-2

  • Online ISBN: 978-3-540-69640-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics