Automatic segmentation of cell nuclei from confocal laser scanning microscopy images | SpringerLink
Skip to main content

Automatic segmentation of cell nuclei from confocal laser scanning microscopy images

  • Conference paper
  • First Online:
Visualization in Biomedical Computing (VBC 1996)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1131))

Included in the following conference series:

  • 241 Accesses

Abstract

In this paper we present a method for the fully automatic segmentation of cell nuclei from 3D confocal laser microscopy images. The method is based on the combination of previously proposed techniques which have been refined for the requirements of this task. A 3D extension of a wave propagation technique applied to gradient magnitude images allows us a precise initialization of elastically deformable Fourier models and therefore a fully automatic image analysis. The shape parameters are transformed into invariant descriptors and provide the basis of a statistical analysis of cell nucleus shapes. This analysis will be carried out in order to determine average intersection lengths between cell nuclei and single particle tracks of ionizing radiation. This allows a quantification of absorbed energy on living cells leading to a better understanding of the biological significance of exposure to radiation in low doses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. W. Reist et. al.: A new method to study low dose radiation damage, Radiation Protection Dosimetry, Vol. 61, No. 1–3, pp. 221–224, (1195)

    Google Scholar 

  2. Peter J. Shaw and David J. Rawlins: The point-spread function of a confocal icroscope: its measurement and use in deconvolution of 3-D data, Journal of Microscopy, Vol 163, pp. 151–165, (1991)

    Google Scholar 

  3. Jose-Angel Conchello and Eric W. Hansen: Three-dimensional reconstrucion of noisy confocal scanning microscope images, SPIE Vol 1161, pp. 279–285, (1989)

    Google Scholar 

  4. Jose-Angel Conchello and Eric W. Hansen: Enhanced 3-D reconstruction from confocal scanning microscope images 1: Deterministic and maximum likelihood reconstructions (1990)

    Google Scholar 

  5. W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, F. S. Fay: Superresolution Three-Dimensional Images of Fluorescence in Cells with Minimal Light Exposure, SCIENCE, Vol. 268, pp. 1483–1487, (1995)

    Google Scholar 

  6. D. A. Agard, Y. Hiraoka, P. Shaw, J. W. Sedat: Fluorescence Microscopy in Three Dimensions, Methods in Cell Biology, Vol. 30, pp. 353–377. Academic Press, San Diego, (1989)

    Google Scholar 

  7. Terzopoulos, D., Witkin, A. and Kass, M.: Symmetry-Seeking Models and 3D Object Reconstruction. Int. J. Comp. Vision 1, 3, 211–221 (1988)

    Google Scholar 

  8. Cohen, I., Cohen, L.D. and Ayache, N.: Using Deformable Surfaces to Segment 3D Images and Infer Differential Structures. CVGIP: Image Understanding 56, 2, 242–263 (1992)

    Article  Google Scholar 

  9. L. H. Staib and J. S. Duncan: Boundary finding with parametrically deformable models. IEEE PAMI 14, 11, pp. 1061–1075, (1992)

    Google Scholar 

  10. L. H. Staib and J. S. Duncan: Deformable Fourier models for surface finding in 3D images. in Proc. VBC'92 Conf., pp. 190–194, (1992)

    Google Scholar 

  11. C. Brechbühler, G. Gerig and O. Kübler: Surface parametrization and shape description., Proc VBC'92 Conf., pp. 80–89, (1992)

    Google Scholar 

  12. C. Brechbühler, G. Gerig and O. Kübler: Parametrization of closed surfaces for 3D shape description. CVGIP: Image Understanding, 61, 2, pp. 154–170, (1995)

    Google Scholar 

  13. M. Kass, A. Witkin and D. Terzopoulos: Snakes: Active contour models, Int. J. Comp. Vision, 1, 4, pp. 321–331, (1988)

    Google Scholar 

  14. W. Greiner and H. Diehl: Theoretische Physik — Ein Lehr-und Übungsbuch für Anfangssemester, Band 3: Elektrodynamik, 61–65, Verlag Harri Deutsch, Zürich und Frankfurt am Main, (1964)

    Google Scholar 

  15. K. Hanahara and M. Hiyane: A Circle-Detection Algorithm Simulating Wave Propagation, Machine Vision and Applications, 3, pp. 97–111, (1990)

    Google Scholar 

  16. G. L. Scott, S. C. Turner and A. Zisserman: Using a mixed wave/diffusion process to elicit the symmetry set, Image and Vision Computing, vol 7, pp. 63–70, (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Karl Heinz Höhne Ron Kikinis

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kelemen, A., Székely, G., Reist, H.W., Gerig, G. (1996). Automatic segmentation of cell nuclei from confocal laser scanning microscopy images. In: Höhne, K.H., Kikinis, R. (eds) Visualization in Biomedical Computing. VBC 1996. Lecture Notes in Computer Science, vol 1131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0046954

Download citation

  • DOI: https://doi.org/10.1007/BFb0046954

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61649-8

  • Online ISBN: 978-3-540-70739-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics