Abstract
In this paper we present a method for the fully automatic segmentation of cell nuclei from 3D confocal laser microscopy images. The method is based on the combination of previously proposed techniques which have been refined for the requirements of this task. A 3D extension of a wave propagation technique applied to gradient magnitude images allows us a precise initialization of elastically deformable Fourier models and therefore a fully automatic image analysis. The shape parameters are transformed into invariant descriptors and provide the basis of a statistical analysis of cell nucleus shapes. This analysis will be carried out in order to determine average intersection lengths between cell nuclei and single particle tracks of ionizing radiation. This allows a quantification of absorbed energy on living cells leading to a better understanding of the biological significance of exposure to radiation in low doses.
Preview
Unable to display preview. Download preview PDF.
References
H. W. Reist et. al.: A new method to study low dose radiation damage, Radiation Protection Dosimetry, Vol. 61, No. 1–3, pp. 221–224, (1195)
Peter J. Shaw and David J. Rawlins: The point-spread function of a confocal icroscope: its measurement and use in deconvolution of 3-D data, Journal of Microscopy, Vol 163, pp. 151–165, (1991)
Jose-Angel Conchello and Eric W. Hansen: Three-dimensional reconstrucion of noisy confocal scanning microscope images, SPIE Vol 1161, pp. 279–285, (1989)
Jose-Angel Conchello and Eric W. Hansen: Enhanced 3-D reconstruction from confocal scanning microscope images 1: Deterministic and maximum likelihood reconstructions (1990)
W. A. Carrington, R. M. Lynch, E. D. W. Moore, G. Isenberg, K. E. Fogarty, F. S. Fay: Superresolution Three-Dimensional Images of Fluorescence in Cells with Minimal Light Exposure, SCIENCE, Vol. 268, pp. 1483–1487, (1995)
D. A. Agard, Y. Hiraoka, P. Shaw, J. W. Sedat: Fluorescence Microscopy in Three Dimensions, Methods in Cell Biology, Vol. 30, pp. 353–377. Academic Press, San Diego, (1989)
Terzopoulos, D., Witkin, A. and Kass, M.: Symmetry-Seeking Models and 3D Object Reconstruction. Int. J. Comp. Vision 1, 3, 211–221 (1988)
Cohen, I., Cohen, L.D. and Ayache, N.: Using Deformable Surfaces to Segment 3D Images and Infer Differential Structures. CVGIP: Image Understanding 56, 2, 242–263 (1992)
L. H. Staib and J. S. Duncan: Boundary finding with parametrically deformable models. IEEE PAMI 14, 11, pp. 1061–1075, (1992)
L. H. Staib and J. S. Duncan: Deformable Fourier models for surface finding in 3D images. in Proc. VBC'92 Conf., pp. 190–194, (1992)
C. Brechbühler, G. Gerig and O. Kübler: Surface parametrization and shape description., Proc VBC'92 Conf., pp. 80–89, (1992)
C. Brechbühler, G. Gerig and O. Kübler: Parametrization of closed surfaces for 3D shape description. CVGIP: Image Understanding, 61, 2, pp. 154–170, (1995)
M. Kass, A. Witkin and D. Terzopoulos: Snakes: Active contour models, Int. J. Comp. Vision, 1, 4, pp. 321–331, (1988)
W. Greiner and H. Diehl: Theoretische Physik — Ein Lehr-und Übungsbuch für Anfangssemester, Band 3: Elektrodynamik, 61–65, Verlag Harri Deutsch, Zürich und Frankfurt am Main, (1964)
K. Hanahara and M. Hiyane: A Circle-Detection Algorithm Simulating Wave Propagation, Machine Vision and Applications, 3, pp. 97–111, (1990)
G. L. Scott, S. C. Turner and A. Zisserman: Using a mixed wave/diffusion process to elicit the symmetry set, Image and Vision Computing, vol 7, pp. 63–70, (1989)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kelemen, A., Székely, G., Reist, H.W., Gerig, G. (1996). Automatic segmentation of cell nuclei from confocal laser scanning microscopy images. In: Höhne, K.H., Kikinis, R. (eds) Visualization in Biomedical Computing. VBC 1996. Lecture Notes in Computer Science, vol 1131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0046954
Download citation
DOI: https://doi.org/10.1007/BFb0046954
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-61649-8
Online ISBN: 978-3-540-70739-4
eBook Packages: Springer Book Archive